Abstract:
Methods, systems, and devices are described for media synchronization. Multi-stream media processes may include media streams captured with respect to different clock rates. Multi-processor implementations may involve separate clocks associated with different media streams, such as audio and video, respectively. The separate clocks may tend to drift from one another, becoming further out of sync as time passes. Selecting a reference time of one of the processors to function as a “wall clock,” recording frame capture times with respect to the reference time, accounting for propagation delays, and transmitting frame capture times in terms of the reference time may aid in AV synchronization at a device where audio and video streams are received.
Abstract:
In-band signaling may be used between two stations to determine the capabilities of the stations and/or send actionable information between the stations participating in the call. The in-band signals are indicative that the station that is transmitting the in-band signals can use in-band signals as a conduit to send and/or receive various types of information and are used to probe whether the receiving station can operate similarly. If the receiving station detects and reacts to the in-band signals, then both stations can pass control information and data as well as enhancements between each other, without any need of infrastructure upgrade and/or quality compromise to legacy phone users. Additionally or alternatively, out of band interfaces and watermarking may also be used.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may identify that the UE is operating in a dual-connectivity configuration with a master node (MN) and a secondary node (SN). The UE may receive at least one request that the UE report MDT measurements. The UE may perform a first portion of measurements associated with the first base station and perform a second portion of measurements associated with the second base station. The UE may perform the measurements while the UE is operating in the dual-connectivity configuration. The UE may transmit one or more reports including information indicative of the first portion of measurements, information indicative of the second portion of measurements, or both.
Abstract:
Various embodiments may provide methods, systems, and devices for supporting application level discovery of Radio Access Network (RAN) statistics and/or events. Various embodiments may provide methods, systems, and devices for supporting application level signaling of Quality of Service (QoS) requirements.
Abstract:
A device may use Precise Point Positioning (PPP) correction information to generate Real Time Kinematic (RTK) correction information that can be sent to other devices for RTK-based positioning. In particular, according to some embodiments, the first device having access to PPP correction information may obtain the PPP correction information and generate RTK correction information by determining a virtual RTK base station location and generating, based on the PPP correction information, a virtual Multi-Constellation Multi-Frequency (MCMF) measurement corresponding to the determined virtual RTK base station location. This virtual MCMF measurement (and/or data derived therefrom) can then be sent to other devices as RTK correction information.
Abstract:
This disclosure provides systems, methods, and apparatus for wireless communications that support fast user equipment (UE) handover between base stations. A UE may receive, from a source base station, a configuration for reference signal transmission at a set of uplink transmit power levels. The UE may transmit multiple uplink reference signal repetitions based on the configuration. The source base station may transmit a request message to a target base station to measure the multiple uplink reference signal repetitions. The target base station may select an uplink reference signal and measure a transmit power correction. The target base station may transmit an indication to the source base station of the selection and transmit power correction. The source base station may evaluate the indications and select the target base station. The source base station may forward to the indicated contents, and the UE may switch and synchronize with the target base station.
Abstract:
Techniques are provided for applying plate tectonic model information to improve the accuracy of base station assisted satellite navigation systems. An example method for determining a location of a mobile device includes receiving base station measurement, coordinate and epoch information, receiving base station velocity information, receiving signals from a plurality of satellite vehicles, and determining the location of the mobile device based on the signals received from the plurality of satellite vehicles, the base station measurement, coordinate and epoch information, and the station velocity information.
Abstract:
A Real-Time Kinematic (RTK) solution is provided to mobile devices having multi-constellation, multi-frequency (MCMF) functionality, in which a single base station may have a baseline much farther than traditional base station and where the high accuracy positioning is achieved in a relatively short period of time. To enable this, embodiments involve modeling of an ionosphere-free carrier phase corresponding to combinations of at least three signals received from one or more satellites. The modeling retains the integer nature of carrier phase ambiguities, thereby allowing for fast convergence in determining the integer ambiguity of the carrier phases.
Abstract:
Disclosed are various techniques for wireless communication. In one aspect, a user equipment (UE) may receive, from a satellite vehicle (SV), a signal of a first frequency band, estimate a first ionospheric delay residual error based on the signal of the first frequency band, calculate a first pseudorange measurement and a first carrier phase measurement based on the first ionospheric delay residual error, and estimate a position using the first pseudorange measurement and the first carrier phase measurement. In some aspects, the ionospheric delay residual error is estimated via a Klobuchar equation. In some aspects, the position is estimated using ultra-long baseline real-time kinematics (RTK) positioning.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may identify, based at least in part a determination to transmit one or more packets, a scheduling request (SR) occasion in which to transmit an SR for uplink resources to transmit the one or more packets, the SR occasion occurring prior to a start of a connected discontinuous reception (CDRX) on duration of the UE. The UE may determine whether the SR occasion occurs within a threshold amount of time prior to the start of the CDRX on duration of the UE. The UE may transmit the SR in the SR occasion based at least in part on the determination of whether the SR occasion occurs within the threshold amount of time prior to the start of the CDRX on duration of the UE. Numerous other aspects are provided.