摘要:
In general, techniques are described for implementing an 8-point inverse discrete cosine transform (IDCT). An apparatus comprising an 8-point inverse discrete cosine transform (IDCT) hardware unit may implement these techniques to transform media data from a frequency domain to a spatial domain. The 8-point IDCT hardware unit includes an even portion comprising factors A, B that are related to a first scaled factor (μ) in accordance with a first relationship. The 8-point IDCT hardware unit also includes an odd portion comprising third, fourth, fifth and sixth internal factors (G, D, E, Z) that are related to a second scaled factor (η) in accordance with a second relationship. The first relationship relates the first scaled factor to the first and second internal factors. The second relationship relates the second scaled factor to the third, fourth, fifth and sixth internal factors.
摘要:
In general, techniques are described for implementing a 16-point discrete cosine transform (DCT) that is capable of applying multiple IDCT of different sizes. For example, an apparatus comprising a 16-point discrete cosine transform of type II (DCT-II) unit may implement the techniques of this disclosure. The 16-point DCT-II unit performs these DCTs-II of different sizes to transform data from a spatial to a frequency domain. The 16-point DCT-II unit includes an 8-point DCT-II unit that performs one of the DCTs-II of size 8 and a first 4-point DCT-II unit that performs one of the DCTs-II of size 4. The 8-point DCT-II unit includes the first 4-point DCT-II unit. The 16-point DCT-II unit also comprises an 8-point DCT-IV unit that includes a second 4-point DCT-II unit and a third 4-point DCT-II unit. Each of the second and third 4-point DCT-II units performs one of the DCTs-II of size 4.
摘要:
In general, techniques are described for implementing an 8-point discrete cosine transform (DCT). An apparatus comprising an 8-point discrete cosine transform (DCT) hardware unit may implement these techniques to transform media data from a spatial domain to a frequency domain. The 8-point DCT hardware unit includes an even portion comprising factors A, B that are related to a first scaled factor (μ) in accordance with a first relationship. The 8-point DCT hardware unit also includes an odd portion comprising third, fourth, fifth and sixth internal factors (G, D, E, Z) that are related to a second scaled factor (η) in accordance with a second relationship. The first relationship relates the first scaled factor to the first and second internal factors. The second relationship relates the second scaled factor to the third internal factor and a fourth internal factor, as well as, the fifth internal factor and a sixth internal factor.
摘要:
This disclosure describes techniques for mitigating rounding errors in a fixed-point transform associated with video coding by applying a variable localized bit-depth increase at the transform. More specifically, the techniques include selecting a constant value based on a size of a fixed-point transform in a video coding device and applying a variable localized bit-depth increase at the transform with a value equal to the constant value. Applying the variable localized bit-depth increase includes left-shifting a transform input signal by a number of bits equal to the constant value before the fixed-point transform, and right-shifting a transform output signal by a number of bits equal to the constant value after the fixed-point transform. The constant value is selected from a plurality of constant values stored on the video coding device. Each of the constant values is pre-calculated for one of a plurality of different transform sizes supported by the video coding.
摘要:
In general, techniques are described for implementing an 8-point discrete cosine transform (DCT). An apparatus comprising an 8-point discrete cosine transform (DCT) hardware unit may implement these techniques to transform media data from a spatial domain to a frequency domain. The 8-point DCT hardware unit includes an even portion comprising factors A, B that are related to a first scaled factor (μ) in accordance with a first relationship. The 8-point DCT hardware unit also includes an odd portion comprising third, fourth, fifth and sixth internal factors (G, D, E, Z) that are related to a second scaled factor (η) in accordance with a second relationship. The first relationship relates the first scaled factor to the first and second internal factors. The second relationship relates the second scaled factor to the third internal factor and a fourth internal factor, as well as, the fifth internal factor and a sixth internal factor.
摘要:
In one example, a video coder is configured to code a first slice, wherein the first slice comprises one of a texture slice and a corresponding depth slice, wherein the first slice has a slice header comprising complete syntax elements representative of characteristics of the first slice. The video coder is further configured to determine common syntax elements for a second slice from the slice header of the first slice. The video coder is also configured to code the second slice after coding the first slice at least partially based on the determined common syntax elements, wherein the second slice comprises one of the texture slice and the depth slice that is not the first slice, wherein the second slice has a slice header comprising syntax elements representative of characteristics of the second slice, excluding values for syntax elements that are common to the first slice.
摘要:
In an example, aspects of this disclosure relate to a method of coding video data that includes identifying a plurality of quantization parameter (QP) values associated with a plurality of reference blocks of video data. The method also includes generating a reference QP for the plurality of reference blocks based on the plurality of QPs. The method also includes storing the reference QP, and coding a block of video data based on the stored reference QP.
摘要:
In one example, a device for coding video data includes a video coder configured to code, for a bitstream, information representative of which of a plurality of video coding dimensions are enabled for the bitstream, and code values for each of the enabled video coding dimensions, without coding values for the video coding dimensions that are not enabled, in a network abstraction layer (NAL) unit header of a NAL unit comprising video data coded according to the values for each of the enabled video coding dimensions. In this manner, NAL unit headers may have variable lengths, while still providing information for scalable dimensions to which the NAL units correspond.
摘要:
During a video encoding or decoding process, a predicted prediction block is generated for a CU. The CU may have two or more prediction units (PUs). A computing device selects a neighbor region size. After the computing device selects the neighbor region size, samples in a transition zone of the prediction block are identified. Samples associated with a first PU are in the transition zone if neighbor regions that contain the samples also contain samples associated with a second PU. Samples associated with the second PU may be in the transition zone if neighbor regions that contain the samples also contain samples associated with the first PU. The neighbor regions have the selected neighbor region size. A smoothing operation is then performed on the samples in the transition zone.
摘要:
For each prediction unit (PU) belonging to a coding unit (CU), a video coder generates a candidate list. The video coder generates the candidate list such that each candidate in the candidate list that is generated based on motion information of at least one other PU is generated without using motion information of any of the PUs belonging to the CU. After generating the candidate list for a PU, the video coder generates a predictive video block for the PU based on one or more reference blocks indicated by motion information of the PU. The motion information of the PU is determinable based on motion information indicated by a selected candidate in the candidate list for the PU.