Abstract:
A light modulating device includes a metal layer, a variable resistance material layer above the metal layer and having a plurality of resistance states depending on a voltage applied thereto, and a meta surface layer above the variable resistance material layer and including a nano structure comprising a conductive material and having a sub-wavelength dimension.
Abstract:
Provided are an optical modulation device and an apparatus including the same. The optical modulation device may include a plurality of reflectors located on a driving circuit substrate, a plurality of nano-antennas located on the plurality of reflectors, and an active layer located between the plurality of reflectors and the plurality of nano-antennas and patterned to have a plurality of openings. The optical modulation device may further include a plurality of first connection members configured to electrically connect the driving circuit substrate to the plurality of reflectors and a plurality of second connection members configured to electrically connect the driving circuit substrate to the plurality of nano-antennas. The plurality of second connection members may be connected to the plurality of nano-antennas through the plurality of openings.
Abstract:
An optical spectrometer may include an optical filter including a plurality of filter layers formed on a base substrate. The filter layers may include a perovskite material and at least two filter layers among the plurality of filter layers may include perovskite materials having different composition ratios from each other. The filter layers may show respective band-gap characteristics in different optical wavelength ranges from each other, in an optical absorption spectrum and/or an optical transmission spectrum.
Abstract:
An electronic apparatus includes a receiver configured to receive data output through a screen of an external display, a memory storing one or more instructions, and a controller including at least one processor configured to execute the one or more instructions stored in the memory, wherein, based on the external display outputting an image corresponding to content, the controller is configured to obtain data that is output through the image, the data including first data including information associated with the content, obtain network connection information for connecting to a network associated with the content based on the first data, and control, by using the network connection information, at least one of the electronic apparatus and an external electronic apparatus, to be connected to the network.
Abstract:
A beam steering device and a system using the same are provided. The beam steering device includes a plurality of transmission type optical modulation devices provided to steer an incident beam in different directions, wherein each of the plurality of transmission type optical modulation devices includes: a phase modulator including a nanoantenna in which a plurality of nanostructure rows are arranged. Each of the nanostructure rows includes a plurality of nanostructures connected to each other. A meta surface includes the plurality of nanostructure rows. Each of the transmission type optical modulation devices also includes a plurality of drivers provided which independently apply an electric signal to each of the nanostructure rows to control a phase change thereof.
Abstract:
An optical spectrometer may include an optical filter including a plurality of filter layers formed on a base substrate. The filter layers may include a perovskite material and at least two filter layers among the plurality of filter layers may include perovskite materials having different composition ratios from each other. The filter layers may show respective band-gap characteristics in different optical wavelength ranges from each other, in an optical absorption spectrum and/or an optical transmission spectrum.
Abstract:
A data transmission and reception method and apparatus in a Multiple-Input Multiple-Output (MIMO) system. The transmission method includes selecting at least one antenna for use in transmission among a plurality of antennas based on transmission data and transmitting the transmission data through the selected antenna. The data transmission and reception method and apparatus are advantageous in increasing the throughput of the MIMO communication system. Also, the data transmission and reception method and apparatus are capable of making it possible to design a superior transceiver in complexity and performance. Also, the data transmission and reception method and apparatus are capable of acquiring extra Degree of Freedom (DOF) and thus increasing the number of symbols that can be transmitted at a time. Furthermore, the data transmission and reception method and apparatus are applicable to conventional MIMO communication systems to obtain extra performance gain without being restricted to certain conditions.