Abstract:
The image display device includes an image generating unit that emits first image light, a pupil expanding element that expands a diameter of a light flux included in the first image light from the image generating unit to obtain second image light, a first light condensing optical system that condenses the second image light and forms an intermediate image, and a second light condensing optical system that condenses light from the intermediate image and generates a virtual image on eye of a viewer, in a plane including at least the image generating unit, the pupil expanding element, and the eye of the viewer, a maximum emission angle of the first image light is smaller than a maximum viewing angle of the virtual image, and the diameter of the light flux included in the second image light is greater than that of a light flux included in the virtual image.
Abstract:
A virtual image display apparatus includes an imaging light emitting unit configured to emit imaging light, and a light-guiding unit configured to guide the imaging light. The light-guiding unit is configured by arranging a first, a second, a third, and a fourth optical system in the stated order in a travel direction of the imaging light. The first optical system forms a first intermediate image of the imaging light. The second optical system includes a first diffraction element forming a pupil between the second and the fourth optical system. The third optical system forms a second intermediate image. The fourth optical system includes a second diffraction element forming an exit pupil by diffracting the imaging light. At the exit pupil, luminance of pixels at a central position of the imaging light and luminance of pixels at end positions of the imaging light differ.
Abstract:
In an optical system, a first optical section having positive power, a second optical section provided with a first diffractive element and having positive power, a third optical section having positive power, and a fourth optical section provided with a second diffractive element and having positive power are disposed along a light path of image light emitted from an image light generation device. A first intermediate image of the image light is formed between the first optical section and the third optical section, a pupil is formed in the vicinity of the third optical section, a second intermediate image of the image light is formed between the third optical section and the fourth optical section, and the fourth optical section collimates the image light to form an exit pupil. The first diffractive element and the second diffractive element are in a conjugate relation or a roughly conjugate relation.
Abstract:
A virtual image display apparatus includes a diffraction optical member including a diffraction section that directs the orientation of image light based on diffraction toward the position of a viewer's eye and a light transmissive substrate that is disposed in the diffraction section and on the side facing the eye and supports the diffraction section, and an image forming section that outputs the image light toward the diffraction optical member, and the light transmissive substrate is a color separation correcting section that corrects color separation produced by the diffraction section.
Abstract:
In a retinal scanning display device, a scanning section scans a light beam emitted from a light source to form a scanned image. The light beam emitted from the scanning section is expanded in beam width of the light beam in a first direction by a first beam width expander. The first beam width expander includes alternately stacked first partially reflective layers and first light-transmissive layers disposed between a pair of first reflection faces that face each other in the first direction. The plural partially reflective layers include a partially reflective layer having a transmittance exceeding 50%. This enables the light intensity distribution to be appropriately adjusted in the first direction for a light beam expanded in the first direction.
Abstract:
An image display device is capable of easily adjusting a diopter scale with respect to a virtual image. The image display device includes an image generating unit that emits image light including image information, a first optical system that forms an intermediate image by condensing the image light, a second optical system that guides a virtual image to eyes of a viewer by deflecting the light from the intermediate image, and guides the light to the eyes of the viewer by transmitting external light, and an intermediate image position changing device that adjusts a position of the virtual image in depth direction by changing a position of the intermediate image.
Abstract:
A display device of the embodiment includes an image generating unit which emits a light including an image information, and a light guide optical system which generates an image from the light which is emitted from the image generating unit at a position of an exit pupil, in which the light guide optical system is provided with a first mirror (a first deflection unit) which deflects the light which is emitted from the image generating unit, and a second mirror (a second deflection unit) which further deflects the light which is deflected by the first mirror to guide the light to the position of the exit pupil and transmits a portion of external light, and in which an optical axis of the light which propagates from the first mirror toward the second mirror and an optical axis of the exit pupil form an acute angle.
Abstract:
An image display device with which it is possible to visually recognize an image while securing the see-through property regardless of eye movements and changes in interpupillary distance, with which it is possible to display a large-size image with high quality, and which is small, has excellent wearability, and has an excellent external appearance.
Abstract:
An imaging unit is provided with a cylindrical lens barrel, and an object-side lens which is disposed in the lens barrel and is fixed to the lens barrel using an adhesive. The lens barrel includes three abutting portions and three adhesive portions. The object-side lens abuts the three abutting portions in an optical axis direction of the object-side lens, and the adhesive portions are formed between an outer circumferential surface of the object-side lens and an inner circumferential surface of the lens barrel, and the adhesive is injected therein. The three adhesive portions are formed at an interval in a circumferential direction. The three adhesive portions and the three abutting portions do not overlap each other in plan view as seen from a vertical direction.
Abstract:
A transport apparatus includes: a transport unit that transports a transport target; an optical detection unit, including a light irradiation unit capable of irradiating the transport target with light and a light-receiving unit that receives light, that detects the transport target; and an output unit that compares a light receiving result from the light-receiving unit with a set value that has been set in advance and outputs a result of the comparison.