Abstract:
An additive manufacturing system and process for producing three-dimensional parts, which includes forming layers of the three-dimensional part from a part material at a first resolution, and ablating selected voxels of the formed layers with a laser beam at a second resolution that is higher than the first resolution.
Abstract:
A method for printing a 3D part in a layer-wise manner includes providing a pool of polymerizable liquid in a vessel over a build window and positioning a downward-facing build platform in the pool, thereby defining a build region above the build window. The method includes selectively curing a volume of polymerizable liquid in the build region by imparting electromagnetic radiation through the build window to form a printed layer of the part adhered to the build platform and actively cooling the build window to remove energy imparted by the electromagnetic radiation and the polymerization reaction of the polymerizable liquid such that the printed layer is between about 1° C. and about 30°° C. below an average part temperature prior to raising the print layer and printing the next layer.
Abstract:
A method for 3D printing a part in a layer-wise manner includes providing a pool of polymerizable liquid in a vessel over a build window and positioning a downward-facing build platform in the pool, thereby defining a build region above the build window. The method includes selectively curing a volume of polymerizable liquid in the build region by imparting electromagnetic radiation through the build window to form a printed layer of the part adhered to the build platform and scanning at least a portion of the build window with monochromatic, polarized light along a plane of incidence. The method includes measuring a change in intensity and polarity of the light to obtain information about the printed layer. The method includes raising the build platform to a height of a next layer to be printed and modifying the electromagnetic energy imparted into the next layer based upon the obtained information to print a next layer. The imparting, scanning, measuring, raising and modifying steps are repeated until the part is printed.
Abstract:
A method for 3D printing a part in a layer-wise manner includes providing a pool of polymerizable liquid in a vessel over a build window and positioning a downward-facing build platform in the pool, thereby defining a build region above the build window. The method includes selectively curing a volume of polymerizable liquid in the build region by imparting electromagnetic radiation through the build window to form a printed layer of the part adhered to the build platform and scanning at least a portion of the build window with monochromatic, polarized light along a plane of incidence. The method includes measuring a change in intensity and polarity of the light to obtain information about the printed layer. The method includes raising the build platform to a height of a next layer to be printed and modifying the electromagnetic energy imparted into the next layer based upon the obtained information to print a next layer. The imparting, scanning, measuring, raising and modifying steps are repeated until the part is printed.
Abstract:
A print assembly for use in an additive manufacturing system to print three-dimensional parts, which includes a coarse positioner, a fine positioner, and a liquefier assembly, where a portion of the liquefier assembly is operably mounted to the fine positioner such that the fine positioner is configured to move the portion of the liquefier assembly relative to the coarse positioner.
Abstract:
A print assembly for use in an additive manufacturing system to print three-dimensional parts, which includes a coarse positioner, a fine positioner, and a liquefier assembly, where a portion of the liquefier assembly is operably mounted to the fine positioner such that the fine positioner is configured to move the portion of the liquefier assembly relative to the coarse positioner.
Abstract:
A magnetically throttled liquefier assembly for use in an additive manufacturing system and configured to heat a metal-based alloy to an extrudable state includes an array of magnets to generate a magnetic field in order to induce a viscosity in the heated metal-based alloy and to control the flow rate of the heated metal-based alloy through the liquefier for extrusion and the building of a three-dimensional object with the metal-based alloy.
Abstract:
A consumable material for use in an extrusion-based digital manufacturing system, the consumable material comprising a length and a cross-sectional profile of at least a portion of the length that is axially asymmetric. The cross-sectional profile is configured to provide a response time with a non-cylindrical liquefier of the extrusion-based digital manufacturing system that is faster than a response time achievable with a cylindrical filament in a cylindrical liquefier for a same thermally limited, maximum volumetric flow rate.
Abstract:
A pump assembly for use in an additive manufacturing system includes a viscosity pump having a first end and a second end wherein the first end has a cross sectional area greater than a cross sectional area of the second end. The viscosity pump has a conical shaped inner surface defining a pump chamber, an inlet proximate the first end and an outlet proximate the second end. The viscosity pump includes an impeller having an axis of rotation, where the impeller has a shaft positioned through the first end of the first housing and into the pump chamber. The impeller includes a distal tip-end at a distal end of the shaft wherein the impeller is configured to be axially displaced within the pump chamber of the viscosity pump parallel to the axis of rotation. An actuator is coupled to a proximal end of the impeller, wherein the actuator is configured to move the impeller parallel to the axis of rotation.
Abstract:
A print head assembly that includes a print head carriage and multiple, replaceable print heads that are configured to be removably retained in receptacles of the print head carriage. The print heads each include a cartridge assembly and a liquefier pump assembly retained by the cartridge assembly.