Abstract:
An OLED display includes pixels, each including a first light emission region having a first area and a first perimeter and a second light emission region disposed neighboring the first light emission region and having a second area and a second perimeter. The first area, the first perimeter, the second area, and the second perimeter respectively satisfy an equation of A1*P2=A2*P1, where A1 is the first area, P1 is the first perimeter, A2 is the second area, and P2 is the second perimeter.
Abstract:
An organic light-emitting display apparatus including a substrate; a display unit which defines an active area of the substrate and includes a thin film transistor; concave-convex portions protruded from the substrate in an area outside the active area; and an encapsulation layer which encapsulates the display unit. The thin film transistor includes an active layer, a gate insulating layer on the active layer, a gate electrode, a source electrode, a drain electrode, and an interlayer insulating layer between the gate electrode and the source electrode, and between the gate electrode and the drain electrode. The concave-convex portions include portions of the gate insulating layer and the interlayer insulating layer, and the encapsulation layer covers the concave-convex portions.
Abstract:
A thin film transistor (TFT) array substrate includes: a substrate; a first insulation layer on the substrate; a capacitor including a lower electrode on the first insulation layer, and an upper electrode arranged to overlap with the whole lower electrode and having an opening, and the upper electrode is insulated from the lower electrode by a second insulation layer; an inter-layer insulation film covering the capacitor; a node contact hole in the inter-layer insulation film and the second insulation layer, and within the opening; and a connection node on the inter-layer insulation film and electrically coupling the lower electrode and at least one TFT to each other through the node contact hole.
Abstract:
A capacitor having a configuration in which capacitors are coupled in series to each other is described. The capacitor formed on a substrate according to an exemplary embodiment of the present invention includes: a polysilicon layer doped with an impurity; a first insulation layer formed on the polysilicon layer; a first metal layer formed on the first insulation layer and including first and second areas; a second insulation layer formed on the first metal layer; and a second metal layer formed on the second insulation layer and coupled to the second area of the first metal layer. The second metal layer is overlapped with at least a part of the first area of the first metal layer.
Abstract:
An organic light-emitting display apparatus includes: a first substrate; an insulating layer on the first substrate; a signal wiring on the insulating layer; an organic light-emitting device on the first substrate, the organic light-emitting device defining an active area and including a first electrode, a second electrode, and an intermediate layer between the first and second electrodes; a passivation layer on the insulating layer; and a metal layer on the passivation layer at an outer region adjacent to the active area, separated from the first electrode, and contacting the second electrode and the signal wiring, wherein a first opening is in the passivation layer at the outer region, and the metal layer contacts the insulating layer at the first opening.
Abstract:
A touch screen panel includes first and second sense cells on a same layer and coupling patterns that couple adjacent ones of the first sense cells and adjacent ones of the second sense cells to each other, respectively. The coupling patterns do not cross with each other, thereby improving the ability of the coupling patterns to withstand static electricity. A dummy line formed of a same material as the sense cells may be formed between the first and second sense cells, and the dummy line is electrically coupled to a guard ring located in an area outside of a display area of the touch screen panel, making it possible to overcome the effects of static electricity applied to the front surface of the touch screen panel as well as the side surface thereof.
Abstract:
A display device includes: a central area having a display area on a substrate; and a peripheral area around the central area; a plurality of pads arranged along one direction in the central area; a plurality of insulating patterns adjacent the plurality of pads; and a slit between the plurality of insulating patterns in the peripheral area, wherein the slit is formed by removing at least a portion of an insulating material of the plurality of insulating patterns.
Abstract:
An organic light emitting diode (“OLED”) display includes: a substrate including a plurality of pixel areas; a plurality of switching transistors and a plurality of driving transistors on the substrate; and an organic light emitting element respectively connected to a switching transistor and a driving transistor among the plurality of switching transistors and the plurality of driving transistors. The driving transistor includes a semiconductor which overlaps a plurality of adjacent pixel areas.
Abstract:
An organic light-emitting display apparatus includes: a first substrate; an insulating layer on the first substrate; a signal wiring on the insulating layer; an organic light-emitting device on the first substrate, the organic light-emitting device defining an active area and including a first electrode, a second electrode, and an intermediate layer between the first and second electrodes; a passivation layer on the insulating layer; and a metal layer on the passivation layer at an outer region adjacent to the active area, separated from the first electrode, and contacting the second electrode and the signal wiring, wherein a first opening is in the passivation layer at the outer region, and the metal layer contacts the insulating layer at the first opening.
Abstract:
A mother substrate for an organic light-emitting display apparatus. The mother substrate has a panel area and a peripheral area surrounding the panel area, pixels disposed in a display area of the panel area, pads that are disposed in a non-display area of the panel area and are coupled to the pixels, test wirings disposed in the peripheral area, a local buffer electrically connected to the test wirings, a bridge wiring connecting the local buffer to one of the pads, and a dummy resistance layer having one end in contact with the bridge wiring and another end in contact with one of the test wirings.