Abstract:
A curved liquid crystal display (“LCD”) includes a thin film transistor (“TFT”) array substrate, a counter substrate facing the TFT array substrate, a liquid crystal layer including liquid crystal molecules of negative dielectric anisotropy and disposed between the TFT array substrate and the counter substrate, a liquid crystal alignment layer disposed between the liquid crystal layer and the counter substrate, a liquid crystal alignment base layer disposed between the liquid crystal layer and the TFT array substrate, and a liquid crystal alignment stabilization layer including projections spaced apart from each other on the liquid crystal alignment base layer between the liquid crystal layer and the liquid crystal alignment base layer, wherein the projections include reactive mesogen polymers, and one of the liquid crystal alignment layer and the liquid crystal alignment base layer includes the reactive mesogen polymers.
Abstract:
A display device includes: a common electrode and a pixel electrode that includes a horizontal stem, a vertical stem, and a branch. A pixel of the branch includes a first branch that extends in a first diagonal direction from the horizontal stem and the vertical stem, and a second branch that extends in a second diagonal direction from the horizontal stem and the vertical stem.
Abstract:
An exemplary embodiment of the present system and method provides a liquid crystal display including: a first substrate; a first electrode formed on the first substrate; a second substrate configured to face the first substrate; and a second electrode formed on the second substrate, wherein the first electrode includes a first portion having a plate shape and a plurality of branch electrodes extended from the first portion, the second electrode includes a cross-shaped cutout including a horizontal stem and a vertical stem that cross each other at a center thereof, and the vertical stem of the cross-shaped cutout includes a first portion having a width that is increased from an end of the first portion of the vertical stem toward the center.
Abstract:
A liquid crystal display device is provided. The liquid crystal display device includes a first substrate and a pixel electrode disposed on the first substrate, the pixel electrode including a cross stem and a plurality of minute branches extending from the cross stem. The cross stem includes a horizontal stem and a vertical stem crossing the horizontal stem. The liquid crystal display device further includes a second substrate facing the first substrate, a common electrode disposed on the second substrate, and a liquid crystal layer including liquid crystal molecules interposed between the first substrate and the second substrate. Each of the minute branches includes a first side forming an angle of about 45° with the horizontal stem and a second side forming an angle of less than about 45° with the horizontal stem.
Abstract:
A liquid crystal display includes a lower electrode, an upper electrode facing the lower electrode, and a liquid crystal layer disposed between the lower electrode and the upper electrode. The lower electrode includes: a center electrode disposed at its center and the center electrode has a polygonal shape including diagonal sides, left and right sides, and upper and lower sides; as first cutout disposed at a center of the center electrode; a plurality of minute branches extending out from the diagonal sides; and a plurality of auxiliary minute branches extending out from the left and right sides. The upper electrode includes a second cutout disposed between the minute branches and the first cutout, and a third cutout connected to the second cutout to form a boundary between a plurality of subregions together with the first cutout, and the left and right sides are inclined at a predetermined angle.
Abstract:
A liquid crystal including: a first substrate; a pixel electrode disposed on the first substrate and including a first subpixel electrode and a second subpixel electrode disposed in one pixel area; a second substrate facing the first substrate; and a common electrode disposed on the second substrate, wherein an area of a region occupied by the first subpixel electrode is less than an area of a region occupied by the second subpixel electrode. Each of the first and second subpixels has a cross-shaped stem and minute branches extending from it to improve side visibility quality and gray scale uniformity.
Abstract:
A liquid crystal display includes a lower substrate and an upper substrate facing each other, a liquid crystal layer provided between the lower substrate and the upper substrate, a plurality of pixel electrodes provided on the lower substrate, extended in a substantially horizontal direction, and including a thin film transistor forming region and a display area, a reference voltage line extended in a substantially vertical direction along a center of the display area, a gate line provided on the lower substrate and extended in the substantially horizontal direction between neighboring pixel electrodes of the plurality of pixel electrodes, a data line provided on the lower substrate and crossing the gate line, and a shield electrode overlapping the gate line and including a curved portion which is disposed on an edge portion of the pixel electrode and overlaps the data line.
Abstract:
A liquid crystal display device includes: a first substrate; a second substrate disposed opposite to the first substrate; a liquid crystal layer disposed between the first substrate and the second substrate and including liquid crystal molecules vertically aligned when an electric field is not generated in the liquid crystal layer; and pixels, each of which includes a first subpixel and a second subpixel, where each of the first subpixel and the second subpixel includes: a first electrode disposed on the first substrate and having a planar shape; a second electrode disposed opposite to and spaced apart from the first electrode and including a linear electrode; and a third electrode disposed on the second substrate and having a planar shape, and a voltage applied to the second electrode of the first subpixel and a voltage applied to the second electrode of the second subpixel are different from each other.
Abstract:
The present invention relates to a liquid crystal display including: a lower electrode including a unit pixel electrode; an upper electrode including an upper unit electrode facing the unit pixel electrode; and a liquid crystal layer between the lower electrode and the upper electrode and including a plurality of liquid crystal molecules aligned approximately perpendicular to the surfaces of the lower electrode and the upper electrode in the absence of an electric field, wherein the unit pixel electrode includes a stem forming a boundary between a plurality of sub-regions and a plurality of minute branches extending in different directions in two different sub-regions, the upper unit electrode includes an opening facing the stem and extending parallel to the stem, any alignment aid to pretilt the liquid crystal molecules is absent, and a length of the minute branches is equal to or less than about 53 μm.
Abstract:
A liquid crystal display includes a common electrode for receiving a common voltage. The liquid crystal display further includes a pixel electrode for receiving a data voltage, the pixel electrode being associated with a pixel of the liquid crystal display. The liquid crystal display further includes a switching element electrically connected to the pixel electrode for controlling transmission of the data voltage. The liquid crystal display further includes a liquid crystal layer disposed between the common electrode and the pixel electrode. The liquid crystal display further includes a plate electrode electrically connected to the switching element and including a plate that overlaps the pixel electrode, wherein the pixel electrode spans a larger area than the plate. The pixel electrode and the plate electrode are equipotential.