Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). In a feedback method of a terminal, receiving a first subframe from a base station, detecting, from the first subframe, downlink control information (DCI) including transmission timing information and frequency resource information for feedback, creating feedback information for data decoding of the first subframe to be transmitted in a second subframe determined based on the DCI, and transmitting the feedback information, based on a time resource indicated from the transmission timing information and a frequency resource indicated from the frequency resource information in the DCI.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure includes an operation method of a terminal in a wireless communication system, the method including checking information on at least one control resource set carrying scheduling information for scheduling remaining system information based on a master information block (MIB) received from a base station, checking the scheduling information in the at least one control resource set, and receiving the remaining system information based on the scheduling information.
Abstract:
A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for Internet of things (IoT) are disclosed. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a terminal for selecting a candidate beam in a wireless communication system is disclosed. The method includes receiving information on a reference signal from a base station, measuring a plurality beams based on the information on the reference signal, and determining at least one candidate beam among the plurality beams, the candidate beam comprising a beam quality above a threshold.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transmission rate than a 4G communication system such as LTE. An embodiment of the present specification relates to an apparatus and a method for MIMO transmission and reception in a closed-loop beamforming system. A communication method of a base station, according to one embodiment of the present invention, may comprise the steps of: transmitting information for channel measurement to a terminal; receiving channel-related information from the terminal; transmitting a first symbol via at least two antennas; and transmitting a second symbol via the at least two antennas by applying different channel mapping rules to the second symbol in the at least two antennas. One embodiment of the present invention can improve overall performance without downward leveling by a symbol transmitted via an antenna having low average channel power.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method of operating a terminal and a base station, and a terminal apparatus and base station apparatus, are provided. The method includes receiving a signal including a synchronization sequence and control information, which is transmitted from a neighbor cell, and decoding the control information based on a reception signal strength of the signal.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A signal transmission and reception method implemented by a terminal of a mobile communication system is provided. The terminal receives first information including a request for beam related information from a base station and transmits second information including the beam related information based on the first information to the base station. The terminal changes at least one of a Tx beam or a Rx beam associated with the base station, based on the first information and the second information.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transmission rate than a 4G communication system such as LTE. An embodiment of the present specification relates to an apparatus and a method for MIMO transmission and reception in a closed-loop beamforming system. A communication method of a base station, according to one embodiment of the present invention, may comprise the steps of: transmitting information for channel measurement to a terminal; receiving channel-related information from the terminal; transmitting a first symbol via at least two antennas; and transmitting a second symbol via the at least two antennas by applying different channel mapping rules to the second symbol in the at least two antennas. One embodiment of the present invention can improve overall performance without downward leveling by a symbol transmitted via an antenna having low average channel power.
Abstract:
A method and a device for transmitting and receiving a signal on the basis of multiple antennas are provided.A transmitting device may include a radio frequency (RF) module transmitting a quadrature amplitude modulation (QAM) signal of a first symbol corresponding to a hybrid frequency shift keying and quadrature amplitude modulation (FQAM) mode and transmitting a QAM signal of a second symbol corresponding to a QAM mode through a second antenna; and a modulation module mapping the QAM signal of the first symbol to one frequency tone among the preset number of frequency tones according to a frequency shift keying (FSK) signal of the first symbol and mapping the second symbol to the frequency tone to which the first symbol is mapped.