Abstract:
An apparatus for a heat assisted magnetic recording device that includes a write pole, a near-field transducer, and a heat sink. The near-field transducer is comprised only of a peg disposed adjacent the write pole. The heat sink is disposed between the write pole and at least a portion of the near-field transducer.
Abstract:
The embodiments disclose at least one predetermined patterned layer configured to eliminate a physical path of lateral thermal bloom in a recording device, at least one gradient layer coupled to the patterned layer and configured to use materials with predetermined thermal conductivity for controlling a rate of dissipation and a path coupled to the gradient layer and configured to create a path of least thermal conduction resistance for directing dissipation along the path, wherein the path substantially regulates and prevents lateral thermal bloom.
Abstract:
A device having an air bearing surface (ABS), the device including a near field transducer (NFT), the NFT having at least a portion thereof at the ABS; a first wrap layer, the first wrap layer surrounding at least a portion of the NFT, the first wrap layer having a thickness of not greater than about 30 nanometers (nm), and the first wrap layer being made of a material that has a refractive index (n) that is not greater than 2.0; a second wrap layer, the second wrap layer surrounding at least a portion of the first wrap layer, the second wrap layer having a thickness that is not greater than 100 nm, and the second wrap layer being made of a material that has a refractive index (n) that is at least about 1.9; and a top cladding layer surrounding at least a portion of the second wrap layer, the top cladding layer being made of a material that has a refractive index (n) that is not greater than 2.0.
Abstract:
A near-field transducer includes an enlarged region having a top side adjacent to a magnetic pole, a base side opposite the top side, and a circumference that extends from proximal to a media-facing surface to distal to a media-facing surface. The near-field transducer includes a peg region in contact with a region of the bas side of the enlarged region, the peg region extending from the enlarged region towards the media-facing surface. The near-field transducer also includes a heat sink region having a contact side, a base side, and a circumference that extends from proximal to the media-facing surface to distal from the media-facing surface. The contact side of the heat sink region is in thermal contact with both the peg region and at least a region of the base side of the enlarged region.
Abstract:
The embodiments disclose a stack feature of a stack configured to confine optical fields within and to a patterned plasmonic underlayer in the stack configured to guide light from a light source to regulate optical coupling.
Abstract:
A plasmonic transducer includes at least two metal elements with a gap therebetween. The metal elements are placed along a plasmon-enhanced, near-field radiation delivery axis. Cross sections of the metal elements in a plane normal to the delivery axis vary in shape along the delivery axis. The metal elements have a reduced cross section portion at a media-facing surface oriented normal to the delivery axis. A dielectric material surrounds the reduced cross section portion of the plasmonic transducer at the media-facing surface, and reduces deformation of the metal elements proximate the media-facing surface at elevated temperatures.
Abstract:
An apparatus includes a plasmonic transducer with first and second oppositely disposed outer edges. A waveguide is configured to receive light from a light source, the waveguide have first and second portions that deliver first and second portions of the light to the first and second edges of the plasmonic transducer. The first and second portions are different by at least one of a geometry and a construction to cause a relative phase shift between the first and second portions of the light.
Abstract:
An apparatus includes a waveguide core having an elongated edge parallel to a substrate plane of the apparatus. An output end of the waveguide core faces a media-facing surface of the apparatus. A plate-like portion of a plasmonic material has a major surface facing the elongated edge of the waveguide core, and the major surface has a narrowed output end facing the media-facing surface. An elongated ridge of the plasmonic material is disposed on at least part of the plate-like portion between an input end and the narrowed output end.
Abstract:
A polarization rotator comprises a first waveguide configured to be coupled to an input coupler at a first end and a second waveguide, wherein the first waveguide is offset from the second waveguide and a second end of the first waveguide is coupled to a second end of the second waveguide.
Abstract:
A light source and a waveguide are mounted on a recording head slider. Light rays are emitted from the light source into the waveguide. The waveguide may include two core layers for light ray transmission. The first core layer enhances light coupling efficiency from the light source to the second core layer. The second core layer transforms a profile of the light. The waveguide may include a tapered portion with a narrow opening near the light source and a wider opening near the tapered portion exit. The light rays passing through the waveguide may be directed toward a collimating mirror. The collimating mirror makes the light rays parallel or nearly parallel and re-directs the light rays to a focusing mirror. The focusing mirror focuses the collimated light rays to a spot on a magnetic media disc.