摘要:
A method and system for tracking a time division multiplexed synchronization signal in a satellite communication system is provided. The signal is provided as a series of frames with beacon signals time division multiplexed into at least one time slot of each frame. The beacon signal in each frame comprises a unique word sequence, which is the same in each frame, and a portion of a PN sequence. The entire PN sequence is distributed into a plurality of frames forming a superframe. Frequency variations of the incoming signal are tracked at the satellite terminal by correlating the PN sequence of the incoming signal against early and late locally generated versions of the PN sequence in a discriminate circuit. The output of the discriminate is provided to a delay locked loop circuit of at least third order. The output of the loop is used to adjust the frequency of the VCO, which clocks the A/D converter operating on the incoming signal. The product of the PN sequence of the incoming signal and an on-time locally generated version of the PN sequence is provided to an FFT circuit. The satellite terminal determines if it is locked onto the incoming signal based on the output of the FFT. If the satellite terminal is not locked, the terminal returns to an acquisition mode.
摘要:
A radio, and related methods of radio communication, consisting of a multi-modulation modem, wherein the multi-modulation modem that modulates and demodulates signals using a plurality of modulations. The radio also comprises a frequency converter coupled to the multi-modulation modem for converting the signals to a radio frequency and a transceiver unit including an antenna coupled to the frequency converter for transmitting the signals over a radio communications link. The multi-modulation modem includes a modulator that includes a modulation selector unit that selects respective ones of the plurality of modulations to modulate the signals. The multi-modulation modem also includes a demodulator for demodulating the signals having been modulated using the plurality of modulations.
摘要:
Improved oxidation methods are provided wherein a reaction mixture comprising a substrate to be oxidized (e.g., phenols, alkenes) and an oxidation catalyst (typically dispersed in an organic solvent system) is supplemented with a compressed gas which expands the reaction mixture, thus accelerating the oxidation reaction. In preferred practice pressurized subcritical or supercritical carbon dioxide is used as the expanding gas, which is introduced into the reaction mixture together with an oxidizing agent. The inventive methods improve the substrate conversion and product selectivity by increasing the solubility of the oxidizing agent in the reaction mixture.
摘要:
A method to minimize catalyst deactivation rate and coke laydown, and maximize desired reaction rate in processing of industrially significant reactions under supercritical conditions to generate a reaction mixture stream including formed reaction products and reactants, said contacting at a desired catalyst temperature of about 1-1.2 critical temperature of the resulting reaction mixture and at a pressure between the critical pressure of the reaction mixture and a pressure necessary to establish said reaction mixture fluid density of greater than 0.65 gm/cc.
摘要:
A novel, packed-bed, reverse flow reactor is provided for the endothermic dehydrogenation of ethylbenzene to styrene. The catalyst bed is flanked by inert end sections to prevent the occurrence of the reverse reaction. Ethylbenzene vapor is added at one end of the reactor while superheated steam is added concurrently at a downstream location. The flow direction is periodically reversed by alternating the ethylbenzene introduction between the reactor ends and the steam introduction between axially symmetric locations away from the reactor ends. Employing a steam to ethylbenzene feed ratio of 8:1 to 10.2:1 (as compared to 12:1 to 17:1 employed during conventional adiabatic operation), it is shown that the proposed reverse flow operation produces reactor temperatures that are hundreds of degrees higher than the mixing cup temperature of the feed streams. While catalyst temperatures are at a maximum when the steam is introduced midway between the reactor ends, splitting the steam addition among multiple axially symmetric locations produces lower and more uniform temperatures that are better suited to providing optimum ethylbenzene conversion and styrene selectivity while maintaining efficient utilization of the added energy.