摘要:
Provided is a cathode active material composed of lithium nickel oxide represented by Formula 1, wherein the lithium nickel oxide contains nickel in an amount of 40% or higher, based on the total weight of transition metals, and the cathode active material comprises a first coating layer provided on the surface thereof and a second coating layer provided on the surface of the first coating layer, wherein the first coating layer is composed of a non-reactive material selected from the group consisting of oxides, nitrides, sulfides and mixtures or complexes thereof and the second coating layer is composed of a carbon-based material.
摘要:
The present invention provides a LiCoO2-containing powder comprising LiCoO2 having a stoichiometric composition via heat treatment of a lithium cobalt oxide and a lithium buffer material to make equilibrium of a lithium chemical potential there between; a lithium buffer material which acts as a Li acceptor or a Li donor to remove or supplement Li-excess or Li-deficiency, coexisting with a stoichiometric lithium metal oxide; and a method for preparing a LiCoO2-containing powder. Further, provided is an electrode comprising the above-mentioned LiCoO2-containing powder as an active material, and a rechargeable battery comprising the same electrode.
摘要:
Provided is a cathode for lithium secondary batteries comprising a combination of one or more compounds selected from Formula 1 and one or more compounds selected from Formula 2. The cathode provides a high-power lithium secondary battery composed of a non-aqueous electrolyte which exhibits long lifespan, long-period storage properties and superior stability at ambient temperature and high temperatures.
摘要:
Provided is a lithium transition metal oxide having an α-NaFeO2 layered crystal structure, as a cathode active material for lithium secondary battery, wherein the transition metal includes a blend of Ni and Mn, an average oxidation number of the transition metals except lithium is +3 or higher, and the lithium transition metal oxide satisfies Equations 1 and 2 below: 1.0
摘要:
Provided is a lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 (M, x and y are as defined in the specification)having mixed transition metal oxide layers (“MO layers”) comprising Ni ions and lithium ions, wherein lithium ions intercalate into and deintercalate from the MO layers and a portion of MO layer-derived Ni ions are inserted into intercalation/deintercalation layers of lithium ions (“reversible lithium layers”) thereby resulting in the interconnection between the MO layers. The lithium mixed transition metal oxide of the present invention has a stable layered structure and therefore exhibits improved stability of the crystal structure upon charge/discharge. In addition, a battery comprising such a cathode active material can exhibit a high capacity and a high cycle stability. Further, such a lithium mixed transition metal oxide is substantially free of water-soluble bases, and thereby can provide excellent storage stability, decreased gas evolution and consequently superior high-temperature stability with the feasibility of low-cost mass production.
摘要:
Disclosed herein is a cathode active material based on lithium nickel-manganese-cobalt oxide represented by Formula 1, wherein the lithium nickel-manganese-cobalt oxide has a nickel content of at least 40% among overall transition metals and is coated with a conductive polymer at a surface thereof. A lithium secondary battery having the disclosed cathode active material has advantages of not deteriorating electrical conductivity while enhancing high temperature stability, so as to efficiently provide high charge capacity.
摘要:
Disclosed herein is a cathode active material based on lithium nickel oxide represented by Formula 1, wherein the lithium nickel oxide has a nickel content of at least 40% among overall transition metals and is coated with a polymer having a melting point of 80 to 300° C. at a surface thereof. A lithium secondary battery having the disclosed cathode active material has advantages of not deteriorating electrical conductivity while maintaining high temperature stability, so as to efficiently provide high charge capacity.
摘要:
Provided is a cathode active material having a composition represented by the following Formula I: LiFe(P1-XO4) (I) wherein a molar fraction (1-x) of phosphorus (P) is in the range of 0.910 to 0.999, to allow operational efficiency of the cathode active material to be leveled to a lower operational efficiency of an anode active material and improve energy density of the cathode active material. Furthermore, a cathode active material, wherein a molar fraction (1-x) of phosphorus (P) is lower than 1, contains both Fe2+ and Fe3+, thus advantageously preventing structural deformation, improving ionic conductivity, exhibiting superior rate properties and inhibiting IR drop upon charge/discharge, thereby imparting high energy density to batteries.
摘要:
Disclosed herein is a cathode active material based on lithium nickel oxide represented by Formula 1, wherein the lithium nickel oxide has a nickel content of at least 40% among overall transition metals and is coated with a compound not reacting with an electrolyte (“non-reactive material”), which is selected from a group consisting of oxides, nitrides, sulfides and a mixture or combination thereof not reacting with an electrolyte, as well as a carbon material, at a surface of the lithium nickel oxide.
摘要:
Disclosed herein is a battery system including two or more kinds of cell lines having different charge and discharge characteristics, wherein each cell line includes one or more battery cells connected in series with each other. In the battery system according to the present invention, the battery cells of at least one cell line exhibit a high-rate charge characteristic, whereas the battery cells of at least another cell line exhibit a high-rate discharge characteristic. Consequently, the high-rate charge and discharge characteristics are improved, and the balance between the charge and discharge characteristics is maintained, whereby the battery system according to the present invention is used as a power source having a high power.