摘要:
Disclosed is a cathode active material for secondary batteries comprising at least one compound selected from the following formula 1: (1−s−t)[Li(LiaMn(1−a−x−y)NixCoy)O2]*s[Li2CO3]*t[LiOH] (1) wherein 0
摘要:
Disclosed herein is a cathode active material for a lithium secondary battery, including lithium transition metal oxide, where the lithium transition metal oxide is coated with carbon particles and a polymer resin at a surface thereof, and the polymer resin is a substance inactivated by an electrolyte for a lithium secondary battery and an organic solvent and has a melting point of at least 80° C. A lithium secondary battery having the disclosed cathode active material has advantages of improving rate properties and high temperature stability, so as to provide excellent cell characteristics.
摘要:
Disclosed is a method for preparing a lithium-metal composite oxide, the method comprising the steps of: (a) mixing an aqueous solution of one or more transition metal-containing precursor compounds with an alkalifying agent and a lithium precursor compound to precipitate hydroxides of the transition metals; (b) mixing the mixture of step (a) with water under supercritical or subcritical conditions to synthesize a lithium-metal composite oxide, and drying the lithium-metal composite oxide; and (c) subjecting the dried lithium-metal composite oxide either to calcination or to granulation and then calcination. Also disclosed are an electrode comprising the lithium-metal composite oxide, and an electrochemical device comprising the electrode. In the disclosed invention, a lithium-metal composite oxide synthesized based on the prior supercritical hydrothermal synthesis method is subjected either to calcination or to granulation and then calcination. Thus, unlike the prior dry calcination method or wet precipitation method, a uniform solid solution can be formed and the ordering of metals in the composite oxide can be improved. Accordingly, the lithium-metal composite oxide can show crystal stability and excellent electrochemical properties.
摘要:
Provided is an electrode active material comprising a nickel-based lithium transition metal oxide (LiMO2) wherein the nickel-based lithium transition metal oxide contains nickel (Ni) and at least one transition metal selected from the group consisting of manganese (Mn) and cobalt (Co), wherein the content of nickel is 50% or higher, based on the total weight of transition metals, and has a layered crystal structure and an average primary diameter of 3 μm or higher, wherein the amount of Ni2+ taking the lithium site in the layered crystal structure is 5.0 atom % or less.
摘要:
Disclosed herein is an integrated electrode assembly including a cathode, an anode, and a separation layer disposed between the cathode and the anode. The cathode, the anode, and the separation layer are integrated with each other. The separation layer includes 3 phases including a liquid-phase component containing an ionic salt, a solid-phase component supporting the separation layer between the cathode and the anode, and a polymer matrix in which linear polymers and cross-linked polymers form a viscoelastic structure with the liquid-phase component and the solid-phase component being incorporated in the polymer matrix. The polymer matrix is coupled to each of the cathode and the anode. The liquid-phase component of the separation layer flows into the electrodes (i.e., the cathode and anode) during preparation of the integrated electrode assembly to greatly improve wetting properties of the electrodes and to increase ionic conductivity of the electrodes.
摘要:
Disclosed herein is a cathode active material for a secondary battery, which includes a combination of one or more selected from compounds represented by Formula 1, one or more selected from compounds represented by Formula 2, and one or more selected from compounds represented by Formula 3, (1-s-t)[Li(LiaMn(1-a-x-y)NixCoy)O2]*s[Li2CO3]*t[LiOH] (1) Li(LibMn(2-b)O4 (2) (1-u)LiFePO4*uC (3) In these formulae 0 y>0.6; 0
摘要翻译:本文公开了一种二次电池用正极活性物质,它包括一种或多种选自式1表示的化合物,一种或多种选自式2化合物的化合物和选自由式3表示的化合物的一种或多种 ,(1-st)[Li(LiaMn(1-axy)NixCoy)O 2] * s [Li 2 CO 3] * t [LiOH](1)Li(LibMn(2-b)O4(2) * uC(3)在这些公式中0 y> 0.6; 0
摘要:
Disclosed herein is a cathode active material for a lithium secondary battery, in particular, including a lithium transition metal oxide with a layered crystalline structure in which the transition metal includes a transition metal mixture of Ni, Mn and Co, and an average oxidation number of all transition metals other than lithium is more than +3, and specific conditions represented by the following formulae (1) and (2), 1.1
摘要:
Provided is a transition metal precursor comprising a composite transition metal compound represented by Formula I, as a transition metal precursor used in the preparation of a lithium-transition metal composite oxide: M(OH1−x)2 (1) wherein M is two or more selected from the group consisting of Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr and transition metals of period 2 in the Periodic Table of the Elements; and 0
摘要:
Disclosed herein is a lithium secondary cell including 20 to 100 wt. % of lithium transition metal oxide represented by a formula of Li1+zNibMncMe1−(b+c)O2, relative to a total amount of a cathode active material, as well as an electrolyte consisting of a lithium salt and a non-aqueous solvent, wherein a first additive to form a protective film (that is, a solid electrolyte interface film: SEI film) over a surface of an anode active material and a second additive to form another SEI film over the surface of the anode active material while inactivating impurities contained in the cathode active material are included in the electrolyte.
摘要:
Disclosed herein is a cathode active material for a lithium secondary battery, in particular, including a lithium transition metal oxide with a layered crystalline structure in which the transition metal includes a transition metal mixture of Ni, Mn and Co, and an average oxidation number of all transition metals other than lithium is more than +3, and specific conditions represented by the following formulae (1) and (2), 1.1