Input/Output Semiconductor Devices
    51.
    发明申请

    公开(公告)号:US20220108984A1

    公开(公告)日:2022-04-07

    申请号:US17554811

    申请日:2021-12-17

    Abstract: A semiconductor device according to an embodiment includes a first gate-all-around (GAA) transistor and a second GAA transistor. The first GAA transistor includes a first plurality of channel members, a first interfacial layer over the first plurality of channel members, a first hafnium-containing dielectric layer over the first interfacial layer, and a metal gate electrode layer over the first hafnium-containing dielectric layer. The second GAA transistor includes a second plurality of channel members, a second interfacial layer over the second plurality of channel members, a second hafnium-containing dielectric layer over the second interfacial layer, and the metal gate electrode layer over the second hafnium-containing dielectric layer. A first thickness of the first interfacial layer is greater than a second thickness of the second interfacial layer. A third thickness of the first hafnium-containing dielectric layer is smaller than a fourth thickness of the second hafnium-containing dielectric layer.

    Gate structure and patterning method

    公开(公告)号:US11264288B2

    公开(公告)日:2022-03-01

    申请号:US16381232

    申请日:2019-04-11

    Abstract: A method of integrated circuit (IC) fabrication includes exposing a plurality of channel regions including a p-type channel region and an n-type channel region; forming a gate dielectric layer over the exposed channel regions; and forming a work function metal (WFM) structure over the gate dielectric layer. The WFM structure includes a p-type WFM portion formed over the p-type channel region and an n-type WFM portion formed over the n-type channel region, and the p-type WFM portion is thinner than the n-type WFM portion. The method further includes forming a fill metal layer over the WFM structure such that the fill metal layer is in direct contact with both the p-type and n-type WFM portions.

    Nanosheet Device with Dipole Dielectric Layer and Methods of Forming the Same

    公开(公告)号:US20210305400A1

    公开(公告)日:2021-09-30

    申请号:US16835759

    申请日:2020-03-31

    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises first semiconductor layers and second semiconductor layers over a substrate, wherein the first semiconductor layers and the second semiconductor layers are separated and stacked up, and a thickness of each second semiconductor layer is less than a thickness of each first semiconductor layer; a first interfacial layer around each first semiconductor layer; a second interfacial layer around each second semiconductor layer; a first dipole gate dielectric layer around each first semiconductor layer and over the first interfacial layer; a second dipole gate dielectric layer around each second semiconductor layer and over the second interfacial layer; a first gate electrode around each first semiconductor layer and over the first dipole gate dielectric layer; and a second gate electrode around each second semiconductor layer and over the second dipole gate dielectric layer.

    WORK FUNCTION DESIGN TO INCREASE DENSITY OF NANOSHEET DEVICES

    公开(公告)号:US20210134794A1

    公开(公告)日:2021-05-06

    申请号:US16874907

    申请日:2020-05-15

    Abstract: In some embodiments, the present disclosure relates to an integrated chip including first, second, and third nanosheet field effect transistors (NSFETs) arranged over a substrate. The first NSFET has a first threshold voltage and includes first nanosheet channel structures embedded in a first gate electrode layer. The first nanosheet channel structures extend from a first source/drain region to a second source/drain region. The second NSFET has a second threshold voltage different than the first threshold voltage and includes second nanosheet channel structures embedded in a second gate electrode layer. The second nanosheet channel structures extend from a third source/drain region to a fourth source/drain region. The third NSFET has a third threshold voltage different than the second threshold voltage and includes third nanosheet channel structures embedded in a third gate electrode layer. The third nanosheet channel structures extend from a fifth source/drain region to a sixth source/drain region.

    Input/Output Semiconductor Devices
    55.
    发明申请

    公开(公告)号:US20210098456A1

    公开(公告)日:2021-04-01

    申请号:US16583406

    申请日:2019-09-26

    Abstract: A semiconductor device according to an embodiment includes a first gate-all-around (GAA) transistor and a second GAA transistor. The first GAA transistor includes a first plurality of channel members, a first interfacial layer over the first plurality of channel members, a first hafnium-containing dielectric layer over the first interfacial layer, and a metal gate electrode layer over the first hafnium-containing dielectric layer. The second GAA transistor includes a second plurality of channel members, a second interfacial layer over the second plurality of channel members, a second hafnium-containing dielectric layer over the second interfacial layer, and the metal gate electrode layer over the second hafnium-containing dielectric layer. A first thickness of the first interfacial layer is greater than a second thickness of the second interfacial layer. A third thickness of the first hafnium-containing dielectric layer is smaller than a fourth thickness of the second hafnium-containing dielectric layer.

    P-metal gate first gate replacement process for multigate devices

    公开(公告)号:US12237396B2

    公开(公告)日:2025-02-25

    申请号:US17874031

    申请日:2022-07-26

    Abstract: Multi-gate devices and methods for fabricating such are disclosed herein. An exemplary method includes forming a gate dielectric layer around first channel layers in a p-type gate region and around second channel layers in an n-type gate region. Sacrificial features are formed between the second channel layers in the n-type gate region. A p-type work function layer is formed over the gate dielectric layer in the p-type gate region and the n-type gate region. After removing the p-type work function layer from the n-type gate region, the sacrificial features are removed from between the second channel layers in the n-type gate region. An n-type work function layer is formed over the gate dielectric layer in the n-type gate region. A metal fill layer is formed over the p-type work function layer in the p-type gate region and the n-type work function layer in the n-type gate region.

Patent Agency Ranking