摘要:
An optical SSB modulator capable of appropriately adjusting a phase difference of light in the MZ waveguides and automatically adjusting a voltage impressed to the bias adjustment electrodes is provided. The above-mentioned object is achieved by an optical SSB modulator (1) provided with a first sub Mach-Zehnder waveguide (MZA) (2), a second sub Mach-Zehnder waveguide (MZB) (3), a main Mach-Zehnder waveguide (MZC) (4), a first bias adjustment electrode (DCA electrode) (5), a second bias adjustment electrode (DCB electrode) (6), a first modulation electrode (RFA electrode) (7), a second modulation electrode (RFB electrode) (8) and a third bias adjustment electrode (DCC electrode) (9), wherein either one of or both of output portions (10, 11) of the MZA and the MZB have an X-branching form, and specifically having one of light paths of the X-branching connected to a photodetector.
摘要:
A reciprocating optical modulator includes a continuous light path fulfilling an amplification function, an optical modulation part formed on the light path, a first optical band-pass filter and a second optical band-pass filter formed to nip the optical modulation part therebetween and a device to introduce exciting light for exciting the light path. The optical modulation part, first and second optical band-pass filters and device are disposed on the light path as formed in a single optical crystal or in a multiplicity of optical crystals. The first optical band-pass filter admits incident light and reflects light having the incident light modulated. The second optical bandpass filter reflects the incident light and emits the light having the incident light modulated. The modulator can also include a third optical band-pass filter disposed between the optical modulation part and the second optical band-pass filter for removing the incident light.
摘要:
A reciprocating optical modulator includes a continuous light path fulfilling an amplification function, an optical modulation part formed on the light path, a first optical band-pass filter and a second optical band-pass filter formed to nip the optical modulation part therebetween and a device to introduce exciting light for exciting the light path. The optical modulation part, first and second optical band-pass filters and device are disposed on the light path as formed in a single optical crystal or in a multiplicity of optical crystals. The first optical band-pass filter admits incident light and reflects light having the incident light modulated. The second optical bandpass filter reflects the incident light and emits the light having the incident light modulated. The modulator can also include a third optical band-pass filter disposed between the optical modulation part and the second optical band-pass filter for removing the incident light.
摘要:
A variable-optical-delay apparatus with a single wavelength converter and optical loop path has an optical modulator able to adjust the delay time according to the input optical signal. The variable-optical-delay apparatus has an optical input section and an optical output section, an optical filter and a wavelength shifter able to adjust an amount by which a wavelength of an input optical signal is shifted disposed on an optical path extending from the input section to the output section. The input optical signal is output from the output section after passing the wavelength shifter a number of times that is determined according to the input optical signal. A resonant type optical modulator can be used that is set between filters, or set between a filter and a reflector. Part of an optical path from the input section to the output section is in the form of an optical loop, an optical modulator is provided on the optical loop.
摘要:
A resonance-type semiconductor optical modulator has an asymmetrical electrode structure in which the microwave power is applied to the semiconductor optical modulation element via a resonator. The resulting higher modulation voltage provides high modulation efficiency while controlling the amount of power consumption. The semiconductor optical modulation element includes an open-ended stub, a short-ended stub connected to the open-ended stub, a feeding line connected to both stubs and common electrodes. The stubs are formed in contact and the semiconductor optical modulation element is connected to the open-ended stub. Otherwise, the resonance-type semiconductor optical modulator can include a semiconductor optical modulation element, a first open-ended stub, a second open-ended stub connected to the first open-ended stub and having a different length than the first open-ended stub, a feeding line that is electromagnetically connected to both open-ended stubs, and common electrodes, in which the first and second open-ended stubs are formed in mutual contact and the semiconductor optical modulation element is connected to an open-ended stub portion other than a portion connecting the feeding line to the open-ended stubs.
摘要:
The present invention relates to a method for generating a single-sideband optical signal. According to the method, as data signals having a 90-degree phase difference with respect to input data signals, which are NRZ signals at 10 Gb/s, 0.5-bit delay data signals are generated by a 0.5-bit delay circuit for obtaining a delay corresponding to π/2 of the bit period of the input data signal. An SSB optical signal produced from the data signals and the 0.5-bit delay data signals is generated through an optical filter. Further, to eliminate a residual intensity-modulated component, the generated SSB optical signal is fed back to appropriately adjust the center frequency of the optical filter. The carrier output frequency of a semiconductor laser can be adjusted instead of the center frequency of the optical filter. When an RZ signal is used as an input data signal, a 0.25-bit delay circuit is used.
摘要:
A slab-type optical device comprising a pair of single mode waveguides equal in phase constant and intersecting each other each at its one end and a pair of single mode waveguides different in phase constant and intersecting each other each at its one end. The pairs of waveguides are joined to each other at their intersections. The angle of intersection of the two waveguides in each pair is set to such a small value that when light propagates along the waveguide a very small distance, the variation in the spacing between the waveguides is negligible relative to the distance of propagation.
摘要:
A general multi-function optical filter for future smart, high density wavelength division multiplexed (WDM) communication and network system applications using a Michelson-GT interferometer (MGTI) is invented. MGTI filter is a typical Michelson interferometer in which one of its reflecting mirrors is replaced by Gires-Toumois resonator (GTR). One unique feature of this device is that it can function as channel passing, channel dropping and wide bandpass filters depending on the interferometer arm length difference. The output of these functions is available in a single port. Other interesting features of this element are (1) that linewidths of both channel dropping and channel passing filters are twice as narrow compared with typical Fabry-Perot filter having similar parameters, (2) that visibility of the output for three functions is always unity regardless of the mirror reflectance value, and (3) that bandpass filter has an excellent, near-perfect, box-like response function. Numerical results showing these characteristics are presented and other applications are discussed.
摘要:
A slab-type optical device comprising a pair of single mode waveguides equal in phase constant and intersecting each other each at its one end and a pair of single mode waveguides different in phase constant and intersecting each other each at its one end. The pairs of waveguides are joined to each other at their intersections. The angle of intersection of the two waveguides in each pair is set to such a small value that when light propagates along the waveguide a very small distance, the variation in the spacing between the waveguides is negligible relative to the distance of propagation.