摘要:
A system transfers energy wirelessly from a source to a sink as an EM near-field according to parameters. The source includes a receive RF chain, and a receive controller. The sink includes a transmit RF chain, and a receive controller. The receive controller measures the energy received as feedback information, which is transmitted to the sink. Then, the transmit controller dynamically varies the parameters to optimized the energy received at the sink.
摘要:
A system for exchanging energy wirelessly includes an array of objects, wherein each object is electromagnetic (EM) and non-radiative and generates an EM near-field in response to receiving the energy. Each object in the array is electrically isolated from the other objects and arranged at a distance from all other objects. An energy driver provides the energy to the array of objects. A receiver, at a relative position with respect to the array receives the energy via resonant coupling of evanescent waves. The system can tunes characteristics of the EM near-field depending on a relative position of the receiver with respect to the array. The tuning can affect frequency, phase and amplitude of the energy field.
摘要:
Data are communicated in a wireless network between a transmitter to a receiver. The transmitter estimates a first channel response between the receiver and the transmitter at the transmitter, and generating a first key based on the first channel response. The data are encoded at the transmitter using a rate-adaptive code to produce encoded data, which is scrambling using the first key before broadcasting. Subsequently, the receiver can estimate a second channel response to generate a second key to be used to descramble the broadcast data.
摘要:
A hybrid communication network for a transportation safety system includes a fixed wired nodes and mobile wireless nodes. Because the wired nodes operate independently packets transmitted by the wired nodes to the wireless nodes need to be synchronized. A downlink travel time for downlink packets traveling from a controller to the wireless nodes is determined. Then, the controller schedules downlink data intervals (DDI) based on the downlink travel time; and transmits downlink packets to the wireless nodes during the DDI, such that a latency requirement of the transportation safety system is satisfied.
摘要:
In a network for a safety system in a transportation system, the transportation system includes a shaft and a car arranged in the shaft. A first wall node is at a first end of the shaft and a second wall node is at a second end of the shaft to communicate safety messages with the car. Each wall node includes at least one wireless transceiver connected to one or more antennas. Each car in the shaft includes at least two wireless transceiver connected to one or more antennas, wherein the first transceiver of the car uses a first frequency and the second transceiver of the car uses a second frequency to communicate each safety messages in duplicate. A wired backbone connects the set of wall nodes to a controller of the safety system of the transportation system.
摘要:
A location of an object is determined by arranging a sequence of bits on a substrate. The sequence of bits includes subsequence of bits, and each subsequence of bits is unique for each location along the substrate. When the object is at a particular location along the substrate a sensor detects the subsequence of bits at the particular location, and a decoder associates the location of the subsequence at the particular location with the object. The substrate can be a leaky coaxial cable with slits or not, corresponding to the bits, or lane markings on a road.
摘要:
Embodiments of the invention disclose a method and a system configured to exchange energy wirelessly, comprising a structure configured to exchange the energy wirelessly via a coupling of evanescent waves, wherein the structure is electromagnetic (EM) and non-radiative, and wherein the structure generates an EM near-field in response to receiving the energy; and a controller configured to tune up the structure such that the near-field is generated according a particular energy distribution pattern.
摘要:
A method measures a time from transmitting a ranging signal to receiving the ranging signal via a channel of a wireless network, and a received signal strength (RSS) of the ranging signal. A distance is estimated based on the time, and a path loss based on the RSS. Probabilities of conditions of the channel are estimated based on the distance and the path loss, wherein the condition is in one of line-of-sight (LOS), or non-LOS (NLOS).
摘要:
A method and system improves two-way radio ranging accuracy by estimating a relative clock frequency offset between a first clock X of a first transceiver and a second clock Y a second transceiver. The first transceiver transmits a first packet at time t0 received by the second transceiver at a time t1. The second transceiver transmits a second packet at a time t2 received by first transceiver at a time t3. The second transceiver transmits a third packet at a time t4 received at a time t5. The relative clock frequency offset is then Δ f XY ′ ≅ 2 f ( N 24 Y - N 35 X ) N 24 Y + N 35 X , where f is a nominal clock frequency of the first and second clocks, NY24 is a measured first delay between times t2 and t4 of the second clock, NX35 is a measured second delay between times t3 and t5 of the first clock X.
摘要翻译:方法和系统通过估计第一收发器的第一时钟X和第二时钟Y之间的相对时钟频率偏移和第二收发器来改善双向无线电测距精度。 第一收发器在时间t1发送由第二收发器接收的时间t0的第一分组。 第二收发器在时间t3在由第一收发器接收的时间t2发送第二分组。 第二收发器在时间t5接收的时间t4发送第三个分组。 相对时钟频率偏移为&Dgr; (N 24 Y - N 35 X)N 24 Y + N 35 X,其中f是第一和第二时钟的标称时钟频率,NY24是时间之间的测量的第一延迟 t2和t4,NX35是第一时钟X的时间t3和t5之间的测量的第二延迟。
摘要:
An adaptive sliding block Viterbi decoder (ASBVD) includes forward and backward Viterbi processors, a state estimator and a control unit. The processors generate metrics of states and of transitions between the states associated with an encoder, based on encoded input information symbols received via a communications channel. Each processor includes a plurality of buffers for storing information symbols so that a number of the encoded input information symbols can be concurrently decoded. The state estimator estimates a current state of a code trellis based on the generated metrics, and the processors decode the stored information symbols based on the estimated current state. The control unit adapts the number of encoded input information symbols to be concurrently decoded based on a condition of the communications channel, and selectively controls the number of buffers that are enabled in accordance with the number of encoded input information symbols to be concurrently decoded.