摘要:
Embodiments of the invention disclose a method and a system configured to exchange energy wirelessly, comprising a structure configured to exchange the energy wirelessly via a coupling of evanescent waves, wherein the structure is electromagnetic (EM) and non-radiative, and wherein the structure generates an EM near-field in response to receiving the energy; and a controller configured to tune up the structure such that the near-field is generated according a particular energy distribution pattern.
摘要:
A system exchanges energy wirelessly and includes a source configured to generate evanescent waves, in response to receiving the energy, on at least part of a surface of the source. The system also includes a sink configured to receive the energy wirelessly from the source via a coupling of the at least part of the evanescent waves and a load configured to receive the energy from the sink. The load and the sink are configured to move along the surface of the source such that the at least a part of the evanescent waves are coupled between the source and the sink within an energy transfer area.
摘要:
Embodiments of the invention disclose a method and a system configured to transfer energy wirelessly, comprising: a source configured to generate evanescent waves, in response to receiving the energy, on at least part of a surface of the source; a sink configured to receive the energy wirelessly from the source via a coupling of the at least part of the evanescent waves; and a load configured to receive the energy from the sink, wherein the load and the sink are configured to move along the surface of the source such that the at least a part of the evanescent waves are coupled between the source and the sink within an energy transfer area.
摘要:
Embodiments of the invention disclose a method and a system configured to exchange energy wirelessly, comprising a structure configured to exchange the energy wirelessly via a coupling of evanescent waves, wherein the structure is electromagnetic (EM) and non-radiative, and wherein the structure generates an EM near-field in response to receiving the energy; and a controller configured to tune up the structure such that the near-field is generated according a particular energy distribution pattern.
摘要:
A system for exchanging energy wirelessly includes an array of objects, wherein each object is electromagnetic (EM) and non-radiative and generates an EM near-field in response to receiving the energy. Each object in the array is electrically isolated from the other objects and arranged at a distance from all other objects. An energy driver provides the energy to the array of objects. A receiver, at a relative position with respect to the array receives the energy via resonant coupling of evanescent waves. The system can tunes characteristics of the EM near-field depending on a relative position of the receiver with respect to the array. The tuning can affect frequency, phase and amplitude of the energy field.
摘要:
Embodiments of the invention disclose a system configured to exchange energy wirelessly. The system includes a structure configured to exchange the energy wirelessly via a coupling of evanescent waves, wherein the structure is electromagnetic (EM) and non-radiative, and wherein the structure generates an EM near-field in response to receiving the energy; and a negative index material (NIM) arranged within the EM near-field such that the coupling is enhanced.
摘要:
Embodiments of the invention disclose a method and a system configured to transfer energy wirelessly, comprising a source configured to transfer the energy wirelessly to a sink via a coupling of evanescent waves, wherein the source generates an electromagnetic (EM) near-field in response to receiving the energy; and an energy relay arranged such that to increase the coupling between the source and the sink, wherein the source, the sink, and the energy relay are electromagnetic and non-radiative structures.
摘要:
A device includes a source for transmitting an electronic charge through a conduction path; a drain for receiving the electronic charge; a stack for providing at least part of the conduction path; and a gate operatively connected to the stack for controlling a conduction of the electronic charge. The stack includes an insulator layer, an N-polar layer and a barrier layer selected such that, during an operation of the device, the conduction path formed in the N-polar layer includes a two-dimensional electron gas (2DEG) channel and an inversion carrier channel.
摘要:
A method and system reduces a peak to average power ratio of a transmitted OFDM signal. An input signal is encoded using a forward error correcting code to produce a codeword corresponding to the input signal. A peak power corresponding to the codeword is measured. The peak power is compared with a predetermined threshold, and a set of selected bits in the codeword are manipulated if the peak power is greater than the predetermined threshold to deliberately produce an erroneous codeword in which the peak power is less than the predetermined threshold, which is transmitted.
摘要:
A device includes a source for transmitting an electronic charge through a conduction path; a drain for receiving the electronic charge; a stack for providing at least part of the conduction path; and a gate operatively connected to the stack for controlling a conduction of the electronic charge. The stack includes an insulator layer, an N-polar layer and a barrier layer selected such that, during an operation of the device, the conduction path formed in the N-polar layer includes a two-dimensional electron gas (2DEG) channel and an inversion carrier channel.