Abstract:
A hybrid electric gas turbine engine includes a fan section having a fan, a turbine section having a turbine drivably connected to the fan through a main shaft that extends along a central longitudinal axis, a gas generating core extending along a first axis that is radially offset from the central longitudinal axis, and an electric motor drivably connected to the main shaft, wherein the electric motor is colinear with the main shaft.
Abstract:
A gas turbine engine includes, among other things, a fan section, a core engine, a bypass passage, and a bypass ratio defined as the volume of air passing into the bypass passage compared to the volume of air passing into the core engine, the bypass ratio being greater than or equal to about 8 at cruise power. A gear arrangement is configured to drive the fan section. A compressor section includes both a first compressor section and a second compressor section. A turbine section is configured to drive the gear arrangement, and may have a low pressure turbine with four stages and a low pressure turbine pressure ratio greater than about 5:1, and a high pressure turbine with two stages. An overall pressure ratio is provided by the combination of a pressure ratio across the first compressor section and a pressure ratio across the second compressor section, and greater than about 40, measured at sea level and at a static, full-rated takeoff power. The pressure ratio across the second compressor section is greater than about 7.
Abstract:
A gas turbine engine includes a primary flowpath fluidly connecting a compressor section, a combustor section, and a turbine section. A heat exchanger includes an first inlet connected to a high pressure compressor bleed, a first outlet connected to a high pressure turbine inlet. The heat exchanger further includes a second inlet fluidly connected to a supercharged CO2 (sCO2) coolant circuit and a second outlet connected to the sCO2 work recovery cycle. The sCO2 work recovery cycle is a recuperated Brayton cycle
Abstract:
A gas turbine engine includes a primary flowpath fluidly connecting a compressor section, a combustor section, and a turbine section. A heat exchanger includes an first inlet connected to a high pressure compressor bleed, a first outlet connected to a high pressure turbine inlet. The heat exchanger further includes a second inlet fluidly connected to a supercharged CO2 (sCO2) work recovery cycle and a second outlet connected to the sCO2 work recovery cycle. The sCO2 work recovery cycle is an overexpanded, recuperated work recovery cycle.
Abstract:
A turbofan engine has an engine case and a gaspath through the engine case. A fan has a circumferential array of fan blades. The engine further has a compressor, a combustor, a gas generating turbine, and a low pressure turbine section. A speed reduction mechanism couples the low pressure turbine section to the fan. A bypass area ratio is greater than about 6.0. The low pressure turbine section airfoil count to bypass area ratio is below about 170.
Abstract:
A compressor section of a gas turbine engine includes a bleed port having a flow splitter therein so as to define a downstream bleed channel having a downstream inlet and an upstream bleed channel having an upstream inlet that is positioned radially outward from the downstream inlet.
Abstract:
A gas turbine engine includes a core having a compressor section with a first compressor and a second compressor, a turbine section with a first turbine and a second turbine, and a primary flowpath fluidly connecting the compressor section and the turbine section. The first compressor is connected to the first turbine via a first shaft, the second compressor is connected to the second turbine via a second shaft, and a motor is connected to the first shaft such that rotational energy generated by the motor is translated to the first shaft. The gas turbine engine includes a takeoff mode of operation, a top of climb mode of operation, and at least one additional mode of operation. The gas turbine engine is undersized relative to a thrust requirement in at least one of the takeoff mode of operation and the top of climb mode of operation, and a controller is configured to control the mode of operation of the gas turbine engine.
Abstract:
A compressor section of a gas turbine engine includes a bleed port having a flow splitter therein so as to define a downstream bleed channel having a downstream inlet and an upstream bleed channel having an upstream inlet that is positioned radially outward from the downstream inlet.
Abstract:
A turbofan engine has an engine case and a gaspath through the engine case. A fan has a circumferential array of fan blades. The engine further has a compressor, a combustor, a gas generating turbine, and a low pressure turbine section. A speed reduction mechanism couples the low pressure turbine section to the fan. A bypass area ratio is greater than about 6.0. The low pressure turbine section airfoil count to bypass area ratio is below about 170.
Abstract:
A gas turbine engine has a fan section, including a fan, a gear arrangement configured to drive the fan section, and a compressor section, including both a first compressor and a second compressor. A turbine section is configured to drive the compressor section and the gear arrangement. An overall pressure ratio is provided by the combination of the first compressor and the second compressor, with the overall pressure ratio being greater than or equal to about 35. The fan is configured to deliver a portion of air into the compressor section, and a portion of air into a bypass duct. A bypass ratio, which is defined as a volume of air passing to the bypass duct compared to a volume of air passing into the compressor section, is greater than or equal to about 8.