摘要:
Ion current detection signal output section for outputting an ion current detection signal including a failure determination signal of an ignition operation is provided, and a failure determination as well as a combustion state can be performed based on this ion current detection signal.
摘要:
A proxy processing method to flexibly add/modify customized operations, such as customized user authentication and accounting, is provided. A state transition engine stores state information and moves processing forward by updating states. It has the following characteristics. (1) a state transition table indicating a proxy processing procedure is generated from a state definition file at start-up (i-(i)). (2) A state transition engine implements proxy processing according to the state transition table (1-(2)). (3) A feature is provided to add an extended region for extended features to the session management table. (1(3)). Also, with regard to extended logging: (1) An extended log definition file indicates extended log information to be logged (2-(1)). (2) Extended log information based on the extended log definition is stored in the session management table (2-(2)). (3) Each access log provides two types of separate information, a fixed-length standard log and a variable-length extended log.
摘要:
A receiver-tank for use in a refrigeration cycle of this invention is provided with a filtering layer 435 formed so that an upper space 402 is formed above the filtering layer 435 in a tank main body 401. An upper end of a refrigerant outlet 441 in a tank bottom wall 421 is opened toward the upper space 402. The refrigerant flowed into the tank main body 401 from the refrigerant inlet 431 passes through the filtering layer 435 upwardly, and forms liquid-stagnation R in the upper space 402. The liquefied refrigerant of liquid-stagnation R flows out of the refrigerant outlet 441. Thereby, only the stable liquefied refrigerant can be extracted more assuredly.
摘要:
This refrigeration system is an orifice-tube system constituting a refrigeration cycle in which a refrigerant passes through a compressor 1, a condenser 10, an orifice-tube 3, an evaporator 4, and an accumulator 5 in this order and then returns to the compressor 1. The condenser 10 is constituted by the so-called multi-flow type heat exchanger having a plurality of passes P1-P3. The intermediate pass P2 is constituted as a decompression pass for decompressing the refrigerant. After condensing the refrigerant by the first pass P1, the condensed refrigerant is decompressed and evaporated by the decompression pass P2, and then the evaporated refrigerant is re-condensed by the third pass P3. This refrigeration system is excellent in response characteristic to thermal load fluctuations and in refrigeration performance.
摘要:
A bidirectional optical space transmission system is made up of a pair of optical transmission apparatus. Each optical transmission apparatus comprises a signal generating circuit for generating a pilot signal, a multiplexing section for multiplexing the pilot signal and a main signal to be transmitted, an electrooptic converter section for emitting an optical signal on the basis of the signal produced by the multiplexing process, a light receiving element for receiving an optical signal transmitted from the partner optical transmission apparatus and detecting a pilot signal contained therein, and a demodulation circuit for demodulating the pilot signal detected by the light receiving element. Pilot signals multiplexed with main signals to be transmitted through the bidirectional optical transmission system are subjected to spreading modulation and demodulated for spreading by the demodulation circuit.
摘要:
The condensing apparatus in a refrigeration cycle includes a condenser having a condensing portion and a receiver-dryer. The receiver-dryer includes a tank main body, a desiccant-filled-portion arranged so that an upper space is formed at an upper part in the tank main body, a refrigerant-introducing-passage for introducing the condensed refrigerant into the tank main body from the condenser, and a refrigerant-discharging-passage for discharging the liquefied refrigerant in the tank main portion. The refrigerant-introducing-passage has an outlet which opens toward an inner bottom of the tank main body. The refrigerant-discharging-passage penetrates the desiccant-filled-portion and has an inlet formed so as to open toward the upper space at an upper end of the desiccant-filled-portion and an outlet formed at a bottom portion of the tank main body. The condensed refrigerant is introduced into the inner bottom of the tank main body through the refrigerant-introducing-passage from the condensing portion of the condenser and passes through the desiccant-filled-portion upward to be accumulated in the upper space. The accumulated liquefied refrigerant is introduced into the inlet of the refrigerant-discharging-passage and flows out of the tank main body via the outlet.
摘要:
A device for detecting the knocking of an internal combustion engine maintaining a favorable knock-detecting state even when a noise component having a small amplitude and lasting long is superposed on an ionic current detection signal. The device comprises a means 1 for detecting the ionic current i that flows through a spark plug 8, a filter 2 means for picking up knock signals Ki from the ionic current, a means 22 for judging the knocking state based on the knock signals, a means 11 for operating a first integrated value Km1 of the knock signals, a means 21 for setting a basic threshold value TH based on the first integrated value, a means 12 for operating a second integrated value Km2 by integrating only those knock signals having amplitudes larger than a lower-limit level among the knock signals, and a means 32 for setting the basic threshold value as the lower-limit level, wherein the occurrence of knocking is judged based on the second integrated value.
摘要:
A combustion state detecting apparatus for an internal-combustion engine improves the signal-to-noise ratio of an ionic pulse signal to achieve good interfacing characteristic, high detection accuracy, and high control reliability without adding to cost. An electronic control unit (2A) which detects the combustion state in a spark plug according to an ionic pulse signal (Gi) includes: an edge detecting circuit (36) for detecting an end edge of an ionic pulse contained in the ionic pulse signal in a detection zone from a second reference crank angle to a first reference crank angle; a level detecting circuit (37) for detecting the level of the ionic pulse signal at the first reference crank angle; and a circuit (38) for determining the combustion state of the internal-combustion engine according to a detection result (Ni) received from the edge detecting circuit and a detection result (Li) received from the level detecting circuit. Thus, an ionic current detection signal can be pulsed using a simple circuit configuration, and the simple determining logic is used to reduce the load on the arithmetic processor of the electronic control unit.
摘要:
An combustion state detecting apparatus for an internal-combustion engine is provided for preventing control errors and detection errors by preventing a biasing circuit from discharging at the start of energization, thereby allowing good sensitivity for detecting ionic current to be maintained. The combustion state detecting apparatus comprises an ionic current detecting circuit which includes a biasing circuit connected to the low voltage end of a secondary winding of an ignition coil and which detects ionic current flowing from the biasing circuit via a spark plug after the combustion of a fuel-air mixture. A current limiting circuit is provided between the low voltage end of the secondary winding and the biasing circuit. An electronic control unit detects the combustion state at the spark plug according to the ionic current. The biasing means circuit applies a bias voltage of the opposite polarity from high voltage for ignition to the spark plug via the low voltage end of the secondary winding; and the current limiting means controls the current flowing from the biasing means to the spark plug via the secondary winding, thus restraining the voltage at the high voltage end of the secondary winding when starting current supply to a primary winding.
摘要:
To correctly sense combusting conditions of an internal combustion engine, an ion current caused by combustion is detected. A combusting condition detecting apparatus for an internal combustion engine comprises a bias voltage generating circuit for applying a bias voltage to an ignition plug provided in a cylinder of the internal combustion engine; an ion current-to-voltage converting circuit for converting an ion current produced in response to the bias voltage into a voltage corresponding to the ion current; a filter circuit for reducing or removing a pulsatory signal upon reception of the voltage signal outputted from the ion current-to-voltage converting circuit; a sensing period setting circuit for defining a predetermined combusting condition sensing period based upon a filter signal outputted from the filter circuit; and an AC component detecting circuit for detecting an AC (alternating current) component in a specific frequency region during the sensing period from the voltage signal derived from the ion current-to-voltage converting circuit.