Abstract:
A catheter includes a plurality of primary leads to deliver energy for ligating a hollow anatomical structure. Each of the primary leads includes an electrode located at the working end of the catheter. Separation is maintained between the primary leads such that each primary lead can individually receive power of selected polarity. The primary leads are constructed to expand outwardly to place the electrodes into apposition with a hollow anatomical structure. High frequency energy can be applied from the leads to create a heating effect in the surrounding tissue of the anatomical structure. The diameter of the hollow anatomical structure is reduced by the heating effect, and the electrodes of the primary leads are moved closer to one another. Where the hollow anatomical structure is a vein, energy is applied until the diameter of the vein is reduced to the point where the vein is occluded. In one embodiment, a balloon is inflated to occlude the structure before the application of energy. Where the structure is a vein, the inflated balloon obstructs blood flow and facilitates the infusion of saline, medication, or a high-impedance fluid to the vein in order to reduce the occurrence of coagulation and to improve the heating of the vein by the catheter. The catheter can include a lumen to accommodate a guide wire or to allow fluid delivery.
Abstract:
A catheter includes a first plurality of expandable leads and a second plurality of expandable leads separate and longitudinally spaced-apart from the first plurality to deliver energy to a hollow anatomical structure, such as vein, fallopian tube, hemorrhoid, esophageal varix, to effectively ligate that structure. Each of the leads includes an electrode located at the distal end of the respective electrode lead. Polarizations of the leads may be selected to achieve the power distribution desired. Each electrode lead includes an outward bend such that when a movable sheath is moved out of contact with the leads, they expand outwardly into apposition with an inner wall of the structure to be ligated. High frequency energy can be applied from the leads to create a heating effect in the surrounding tissue of the anatomical structure. The diameter of the hollow anatomical structure is reduced by the heating effect, and the electrodes are freely moved inward by the shrinking structure while still maintaining apposition with the inner wall of the shrinking structure.
Abstract:
A method of creating a tissue effect at a tissue site delivers electromagnetic energy through a skin surface from an electromagnetic energy delivery device coupled to an electromagnetic energy source. At least one of the electromagnetic energy delivery device or electromagnetic energy source includes a memory. A reverse thermal gradient is created through the skin surface to sufficiently heat an underlying tissue site to provide that a temperature of the skin surface is lower than a temperature of the underlying tissue. Information is stored from the memory to facilitate operation of at least one of the electromagnetic energy delivery device or the electromagnetic energy source. Electromagnetic energy is applied through the skin surface to the underlying tissue. A tissue effect is created on at least a portion of the tissue site.
Abstract:
An RF device has a support structure. An RF electrode, coupled to the support structure, includes conductive and dielectric portions. A cooling member, coupled to the support structure, is configured to cool a back surface of the RF electrode. The cooling member is distanced from the back surface of the RF electrode.
Abstract:
These and other objects of the present invention are achieved in a method for creating a desired tissue effect. An RF electrode is provided that includes a conductive portion. The RF electrode is coupled to a fluid delivery member that delivers a cooling fluidic medium to a back surface of the RF electrode. A dielectric is positioned on a skin surface. The RF electrode is coupled with the dielectric. RF energy is delivered from the RF electrode and the dielectric to the skin surface.
Abstract:
A catheter includes a plurality of expandable primary leads to deliver energy to a fallopian tube, a vein such as a hemorrhoid or an esophageal varix, or another hollow anatomical structure requiring ligation or occlusion. Each of the primary leads includes an electrode located at the working end of the catheter. Separation is maintained between the primary leads such that the leads can receive power of selected polarity. The primary leads are constructed to expand outwardly to place the electrodes into apposition with a hollow anatomical structure. High frequency energy can be applied from the leads to create a heating effect in the surrounding tissue of the anatomical structure. The diameter of the hollow anatomical structure is reduced by the heating effect, and the electrodes of the primary leads are moved closer to one another.
Abstract:
An endoscopic ablation system is provided for use with a flexible endoscope for the ablative treatment of diseased tissue on the interior lining a body lumen. The endoscopic ablation system includes a support member for supporting at least two electrodes that are electrically connected to a RF generator. The electrodes have a shape, size, and spacing that provide ablation between the electrodes, while minimizing ablation of tissue directly underneath the electrodes. The endoscopic ablation system can also include a sheath that fits over a flexible endoscope. A flexible coupling can join the support member to the sheath to facilitate intubation. The support member can include a side opening, and the sheath can include a seal, so that the aspiration means of the endoscope may be used to evacuate the air from inside the body lumen and pull the tissue to be treated into intimate contact with the electrodes.
Abstract:
A catheter includes a plurality of expandable primary leads to deliver energy to a fallopian tube, a vein such as a hemorrhoid or an esophageal varix, or another hollow anatomical structure requiring ligation or occlusion. Each of the primary leads includes an electrode located at the working end of the catheter. Separation is maintained between the primary leads such that the leads can receive power of selected polarity. The primary leads are constructed to expand outwardly to place the electrodes into apposition with a hollow anatomical structure. High frequency energy can be applied from the leads to create a heating effect in the surrounding tissue of the anatomical structure. The diameter of the hollow anatomical structure is reduced by the heating effect, and the electrodes of the primary leads are moved closer to one another.
Abstract:
A fluid delivery apparatus for introducing a fluid cooling media to a skin surface includes a template with a skin interface surface. An energy delivery device is coupled to the template. A fluid cooling media introduction member is coupled to the template. Resources controllably deliver energy from the energy delivery device to the skin surface. In a related embodiment, the resources are configured to controllably deliver the flowable cooling media to the introduction member. In another embodiment, a sensor is coupled to the resources and to the skin surface.
Abstract:
A bipolar electrosurgical instrument is described which may be used for heating the inner lining of a lumen or cavity within a patient. In particular, the present invention is directed to an electrosurgical instrument including a flexible elongated tube having a proximal and a distal end, a first balloon electrode attached to the distal end of the flexible elongated tube. The first balloon electrode includes a first expandable sleeve formed from an electrically insulating material and a first electrically conductive fluid in the expandable sleeve. A first electrode is positioned in electrical contact with the first electrically conductive fluid. A return balloon electrode is spaced proximally from the first balloon electrode, wherein the return balloon electrode includes a second expandable formed from an electrically insulating material and a second electrically conductive fluid disposed within the second expandable sleeve. A return electrode is positioned in electrical contact with the second electrically conductive fluid.