Abstract:
The invention relates to a method for the continuous production of ethylene homo- and ethylene co-polymers in the presence of radical polymerisation initiators and, optionally, molecular weight regulators in a tubular reactor with a hot water jacket and one or several reaction zones at pressures of 1000 to 4000 bar and temperatures of 120° C. to 350° C. The hot water jacket of each reaction zone is divided into two independently-controllable, separate, longitudinal sections and the water exit temperature from the tubular jacket of the first longitudinal section per reaction zone, extending between the point of initiator addition and 20 to 50% of the reaction zone length, is set to 180° C. to 210° C. and in the following second longitudinal section of said reaction zone the hot water exit temperature from the tube jacket is set to 140° C. to 180° C.
Abstract:
The invention relates to a process for the chlorination of methylsilanes, which comprises reacting methylsilanes with chlorine in the presence of at least 0.1% by weight of hydrogen chloride, based on the weight of methylsilane of the formula (II), under the action of electromagnetic radiation which induces chlorination, chlorine being used in a substoichiometric amount based on the methylsilane of the formula (II), and the reaction being carried out at temperatures below the boiling point of the methylsilane of the formula (II). The invention further relates to an apparatus suitable for carrying out the chlorination of an industrial scale.
Abstract:
A supercritical oxidation process carried out in water is capable of oxidising nullorganicsnull in precious metal organic compositions such as heterogeneous (Pt/C) or homogeneous precious metal catalysts and producing a precious metal oxide with few by-products and low losses of precious metal.
Abstract:
The invention relates to a process for the chlorination of methylsilanes, which comprises reacting methylsilanes with chlorine in the presence of at least 0.1% by weight of hydrogen chloride, based on the weight of methylsilane of the formula (II), under the action of electromagnetic radiation which induces chlorination, chlorine being used in a substoichiometric amount based on the methylsilane of the formula (II), and the reaction being carried out at temperatures below the boiling point of the methylsilane of the formula (II). The invention further relates to an apparatus suitable for carrying out the chlorination of an industrial scale.
Abstract:
This invention is directed to an improved process for producing a polyester oligomer. The process employs a pipeline reactor, having at least two stages, in which the degree of polymerization of an oligomeric feed material is raised from about 2-10 to about 2-40 and the ratio of carboxyl to hydroxyl end groups in the product is reduced. In a first stage of the process, a monomeric diol or polyol, such as ethylene glycol, is added to a melt of the oligomeric feed material. In a second stage of the process, the molecular weight of the oligomer is increased by removal of volatile reaction by-products, including water and polyol. The oligomer produced by the present invention may be used in making higher molecular weight polyesters.
Abstract:
A process and apparatus for the supercritical water oxidation of organic waste materials which avoids or at least substantially reduces the corrosion and solids deposition problems associated with prior art techniques and which provides for efficient heating of the waste material to reaction conditions. Externally heated supercritical water is fed to a compound platelet tube reactor. The compound reactor includes a reaction zone and inner (smaller) and outer (larger) concentric platelet tubes supported concentrically within a shell. The water fed to the reactor both protectively coats surfaces of the inner and outer platelet tubes facing the reaction zone and heats the waste stream to oxidation reaction conditions. Higher reaction temperatures can be used as compared to prior art processes, which significantly improves the reaction rate and permits smaller reactors to be used. The protective films of water on the surfaces of the platelet tubes, coupled with the elimination of preheating of the waste material, substantially reduces solids deposition and corrosion.
Abstract:
A modular chemical reactor. The reactor includes a reactor housing having identical and interchangeable ends, a reaction chamber within the reactor housing, a pair of identical and interchangeable modular seal nuts connected to the ends of the reactor housing, and a pair of double-sided screen seals within the modular seal nuts.
Abstract:
The invention includes a pressure vessel and a method of pressurizing, via a fluid medium, waste matter at an ultra high pressure. The invention includes an ultra high pressure vessel. The pressure vessel has quick opening closures at each end. A fluid medium is available for supply to pressure vessel cavity within the pressure vessel. A means for supplying the fluid medium under ultra high pressures into the fluid vessel cavity is also provided. The invention further includes a ram means or a means for loading and compacting the waste matter. The method includes pressurizing the matter at a sufficient pressure and holding the pressure for a sufficient time to sterilize the matter.
Abstract:
A method and apparatus for mass producing composite products comprising a novel autoclave having a cylindrical vacuum chamber; a cylindrical compression chamber surrounding the vacuum chamber; a reusable, flexible diaphragm defining the boundary between the chambers; and means for supplying heat and pressure between the diaphragm and the compression chamber. A core or mandrel is wrapped with a fiber-reinforced resin and is placed in the autoclave within the flexible diaphragm. Alternatively, a part layup can be sandwiched between an elastomeric caul and a hard tool by wrapping with expendable shrink tape to accommodate a variety of part shapes having constant or nearly constant cross sections throughout their length. The autoclave is then sealed and evacuated, causing the diaphragm to compress the resin layer against its core or mandrel due to atmospheric or higher pressure in the compression chamber. The autoclave is then heated to cure the resin. Subsequently, the autoclave is unsealed and the finished product is removed, with the autoclave immediately available for reuse.
Abstract:
A process for effecting chemical reactions, including wet oxidation reactions, in a deep well or down-hole reactor preferably providing a crosscurrent flow in a nested tube configuration wherein the influent fluid is in heat transfer relation with the effluent fluid. The disclosed process includes flowing an influent fluid including the reactants downwardly through a downcomer pipe which extends below ground in a subterranean opening or well casing forming a hydrostatic column of fluid, which defines a predetermined pressure, with the reactants at a temperature sufficient to initiate and maintain the desired chemical reaction. The method then includes flowing the effluent fluid upwardly through an upcomer pipe to ground level, preferably in heat transfer relation with the downflowing influent fluid. The method of this invention includes boiling the effluent fluid in the upcomer pipe, thereby reducing the hydrostatic fluid pressure in the upcomer and increasing the mass flow rate. The boiling of the effluent in the upcomer pipe may be initiated periodically at predetermined timed intervals to reduce pump pressure and increase the mass flow rate through the apparatus or the boiling of the effluent may be maintained to substantially eliminate pump pressure following initiation of an exothermic reaction in the reaction zone defined at the lower extent of a deep well reaction apparatus.