Abstract:
The present invention is directed to an elevator dispatching system for controlling the assignment of elevator cars. More particularly, the present invention is directed to a method of determining the commencement and/or conclusion of UP-PEAK and DOWN-PEAK periods of operation. For example, for commencing UP-PEAK operation, a lobby boarding rate is predicted, based on historical information of the number of passengers boarding the elevators at the lobby and the number elevators leaving the lobby. The predicted lobby boarding rate is compared with a predetermined threshold value. If the predicted lobby boarding rate is greater than the predetermined threshold value, UP-PEAK is commenced. In the preferred embodiment, the predetermined threshold value is a predetermined percentage of the elevator car's capacity. Additionally, the present invention is directed to a method of adjusting the threshold value based on actual passenger traffic. For example, once UP-PEAK is commenced, the load of the first few elevators leaving the lobby within a predetermined time interval is determined, and the threshold value is adjusted based on their determined load. If the determined load is greater than a certain percentage of the elevator car's capacity, indicative of starting UP-PEAK too late, the threshold value is decreased. Similarly, if the determined load is less than a certain percentage of the elevator car's capacity, indicative of starting UP-PEAK too soon, the threshold value is increased.
Abstract:
A method for controlling an elevator group in which statistical data on a traffic flow within an elevator group, representing the times, local and total volumes of the traffic, and a number of different traffic types used in a group control are stored in a memory unit belonging to the control system. The traffic flow is divided into two or more traffic components, the relative proportion or different traffic components and the prevailing traffic intensity are deduced from the traffic statistics, the traffic components and traffic intensity, i.e. the traffic factors, are subjected to assumptions whose validity is described by means of membership functions of the factors. A set of rules which correspond to different traffic types are formed from these factors and are assigned values by means of the factors and membership functions, the rule which best describes the prevailing traffic is selected, and the traffic type corresponding to the selected rule is used in the control of the elevator group.
Abstract:
The present invention is directed to assigning an elevator car in response to a hall call, based on a series of bonuses and penalties and remaining response time, defined herein as an estimation of the amount of time required for an elevator car to reach the floor at which the hall call is registered, given the car calls and hall calls to which the elevator car is committed. Upon the registration of a hall call, a relative system response (RSR) value for each elevator car is determined based on a series of bonuses and penalties. Additionally, a remaining response time (RRT) value for each car is determined. The RRT value of the elevator car having the most favorable RSR value is compared with the RRT value of the elevator car having the lowest RRT value. Based on this comparison, one of the two elevator cars will be assigned to service the hall call. The present invention preferably assigns the hall call to the elevator car which has the lowest RSR value, except where there exists another car which could reach the floor registering the hall call at least a predetermined amount of time before the car having the most favorable RSR value.
Abstract:
A group management method and apparatus for elevators is disclosed. The apparatus includes a car-position predicting device for predicting a car position and a car direction which will have been taken by each car when a predetermined time has elapsed, a predicted-empty-car detecting device for predicting from the predicted car position and direction an empty car which will be available when the predetermined time has elapsed, and an assignment restricting device for restricting the assignment of the predicted empty car to a floor call. In the group management method, a waiting time derived from a registered floor call which is assigned to each car is evaluated, and a car to be assigned to the floor call is selected on the basis of the result of the evaluation.
Abstract:
An apparatus for performing a group control on elevators is disclosed, by which a total operation of the elevators for respective floors of building is controlled. This apparatus includes condition-instruction table which contains a plurality of predetermined control rules being defined by given conditions and given instructions. The apparatus also includes an elevator controller for detecting, in accordance with a specific rule selected from the control rules, a degree of establishment of the given conditions to provide a detected condition, and for generating, in accordance with the detected condition, an elevator control instruction used for performing the group control.
Abstract:
An elevator passenger traffic measuring system distributes passengers whose destination floors cannot be determined to each of origin-destination floor pairs in accordance with an elevator car position, an incoming passenger number and an outgoing passenger number at each floor, and registered car calls, using probability weights for the origin-destination floor pairs which are determined by previous traffic measurements. The system then estimates the number of passengers for each of the origin-destination floor pairs in accordance with the distributed passengers, and the passengers who moved the corresponding one of the origin-destination floor pairs.
Abstract:
An elevator control system employs a microprocessor-based group controller which communicates with the cars of the elevator system to determine the condition of the cars, and responds to hall calls registered at a plurality of landings in the building serviced by the cars under control of the group controller, on a cyclic basis which recurs several times per second, to assign every unanswered hall call to a car deemed best suited for response to that call, in each cycle, based upon the information provided by the car to the group controller within that cycle of operation. In any cycle in which a call is assigned to a car other than a car to which the call had previously been assigned, the assignment of the call to the previous car is nullified. At the end of each cycle, any car which indicates that its committable position coincides with the floor of a hall call which has been assigned to it will receive a stop command. In the assignment of calls to cars, preference is given to any car which previously had a call, although the preference is relative and not absolute. Exemplary elevator apparatus, signal processing apparatus, and logic flow diagrams are disclosed to illustrate the specific manner of assigning calls to cars on a continuously updated basis, and to illustrate the environment in which the invention may be practiced.1. Technical FieldThis invention relates to elevator systems, and more particularly to the response to hall calls by a selected one of a group of elevators serving floor landings of a building in common, on a continuously updated basis.Background ArtAs elevator systems have become more sophisticated, including a large number of elevators operating as a group to service a large number of floors, the need developed for determining the manner in which calls for service in either the up or down direction registered at any of the floor landings of the building are to be answered by the respective elevator cars. The most common form of elevator system group control divides the floors of the building into zones, there being one or several floors in each zone, there being approximately the same number of zones as there are cars in the elevator system which can respond to group-controlled service of floor landing calls. Typical operation of such systems forces a car into any zone which does not have an elevator in it, and causes the car to attempt to respond to all the calls registered within the zone. However, the answering of any calls by the car, and the demands made by the passengers in registering car calls will normally carry the car outside of the zone; also, if the car commences traveling upwardly to answer up calls, it is unavailable to answer down calls. For that reason, systems operating under a zone-controlled mode of operation require a wide variety of additional features. For instance, if the calls in a zone are not answerable by the car in that zone, a car may be borrowed from another zone which has no calls; or, if one zone has no car in it, and no car is available for assignment to it, a zone of lesser importance might lose its car in favor of the zone under consideration. In the zone-controlled systems, it frequently occurs that some calls are not answered at all after an impermissible delay; therefore, such systems frequently have one or two modes of backup operation, ultimately resulting in a non-zone type of a flat command to a car to answer a call which has been registered for an impermissible time.A more recent innovation has been the assignment of calls to cars by scanning all unassigned registered hall calls, comparing the location and direction of each such unassigned call with the present conditions of each of the cars, including the car location and direction of travel and the number of stops which the car will make between its present position and the position of the call, and assigning such call, absolutely, to the car which is estimated, in the first examination of each registered hall call, to be able to reach the floor landing of the hall call the quickest, based upon a scheme of operation which considers only approximate travel time and number of stops, along with car travel direction and car location. Such system, however, has a basic disadvantage that the conditions upon which the call has been made may change radically long before the call is answered by the car to which it has been assigned. For instance, a deliveryman may prop the door of the car open while he unloads packages, thus unduly delaying the car; or, at one of its in-between stops, the car may pick up an excessive number of passengers, who register a large number of hall calls that were not considered during the original assignment. In such case, as in the case of zone-controlled group systems, it is necessary to provide several levels of backup modes of operation. For instance, a first level backup mode may reenter the call for reassignment if it is not answered within a first predetermined time interval. And if that fails, and the call is still unanswered after a second, longer predetermined interval, then an absolute priority assignment of a car to answer that call may be required. Or, assigned calls may be reevaluated with respect to reassignment to other cars; but the comparison is made with respect to a previously determined response time for the first car to which the call was assigned. Such response time does not reflect current conditions appertaining to the previous car.In either of these mode of operation, the facts that the primary mode of operation (zone or call assignment) is upset by anything other than an ideal pattern of traffic flow, necessarily requiring the backup modes, the change of the system from operating in the primary mode to backup mode resulting in further disruption, and further requirement for an additional backup mode, indicate that such systems fail to provide the desired service.The zone type of operation does not take into account conditions within the building at any time. The assignment of calls-to-cars mode which has been known in the prior art assumes that it can anticipate conditions, assign calls on that basis, but is incapable of truly responding to actual conditions of the building insofar as assigning calls to cars is concerned. And, both types of systems are non-dynamic until something goes wrong (undue delay in responding to a call) and then shift into other non-dynamic modes, which still do not take into account the actual, current conditions in the building, but respond in a reactionary sort of a way to a condition which is deemed to be exceptional and unacceptable with respect to the principal mode of operation, thus causing still further disruption.Both of the types of systems described hereinbefore are based upon the relationship between a registered call and a car, be that relationship an estimated time for response or a zone within which each is located. In neither of these cases are the actual current conditions of the system continuously reevaluated with respect to all unanswered hall calls.DISCLOSURE OF INVENTIONOjbects of the present invention include provision of an elevator control system in which all unanswered hall calls are assigned to cars on a current, dynamic basis, which takes into account actual, current conditions of the system.According to the present invention, all unanswered hall calls registered at a plurality of landings in a multi-elevator system are repetitively assigned to cars on a cyclic basis recurring several times per second on the basis of conditions of each car relative to each such unanswered hall call, including the floor landing and direction of the unanswered hall call under consideration and including service to be performed by each car in advance of its ability to service the hall call under consideration, as indicated within each cycle in which such call is assigned to any car; after making the assignment of any hall call in any cycle, the assignment of such hall call made to any car in a cycle next preceding such cycle is removed from such car if the call is assigned to a different car during such cycle; at the end of each cycle, a stop command is issued to any car to which the committable floor position coincides with the landing of a hall call assigned to it.In accordance with other aspects of the present invention, in each cycle of assigning calls to cars based upon conditions of the car relative to the call in question, preference is given to a car to which the call was assigned in a next preceding cycle; the preference may be based upon a weighted factor, when call assignments are made on the basis of weighted factors; if a weighted perference factor is employed in practicing the invention, the weighted preference factor may have a value on the same order of magnitude as it takes for an elevator to service from one to ten call landings, or it may be based on a reasonable time for a call to be unanswerable before desiring reassignment, or it may relate to a delay in servicing said call on the order of some part of a minute.The present invention provides for assignment of calls to cars based upon current information, at a rate of updating which is serveral times faster than the rate at which an elevator car may pass a landing at high speed; the conditions considered in assigning the calls to the cars are current, being updated in every cycle; the assignment of a call to a car is based upon the best assignment possible, in any cycle, which recur several times per second, thereby ensuring that as conditions change, the assignment may also change, if desirable, to provide proper service to the call while at the same maintaining other factors of overall system response. Provision of preference for a call assigned to a car to be reassigned to the same car permits control over race conditions so that cars are not unnecessarily started nor alternatively having a hall call assigned to them, which only one ultimately will answer. The invention provides, for the first time, a total capability for rapidly updating hall call assignments without any of the adverse effects which would otherwise be created.The foregoing and other objects, features and advantages of the present invention will become more apparent in the light of the following detailed description of an exemplary embodiment thereof, as illustrated in the accompanying drawing.
Abstract:
Embodiments herein relate to an elevator system of a facility with multiple floors. The elevator system can comprise elevator cars and an elevator controller. The elevator controller includes a memory and a processor. The memory stores computer program instructions executable by the processor to cause the elevator system to determine a current utilization of the elevator system, automatically activate an adaptive split group operation on a per floor basis when the current utilization of the elevator system is greater than a threshold utilization of the elevator system, and dispatch the elevator cars under the adaptive split group operation in accordance with elevator calls.
Abstract:
An elevator control method for an elevator system including cars movable in an elevator shaft of a building the building being dividable into serving sectors each serving sector including at least one floor to be served by a car, and a recording device for recording car usage data, the recording device being dedicated to the cars, wherein the recording device forwards the car usage data to an elevator controller receiving the car usage data for creating car-logbook-data. The method of division of the serving sectors is decided on evaluation-analysis of the car-logbook-data by gathering and storing the car usage data over a period of time into a memory of the elevator controller and allocating a serving sector in dependency of the evaluation-analysis of the car usage data respectively.
Abstract:
In a method for controlling an elevator system, hints relating to potential elevator passengers are received from at least one observation point connected to the elevator system. Based on the hints, forecasts relating to potential elevator passengers are prepared, on the basis of which forecasts one or more anticipatory control actions are executed.