Abstract:
A method for providing an observer with an intuitive awareness of a tactical environment is disclosed. In an illustrative embodiment, the method displays a 360° panoramic view of the environment surrounding a warship, wherein the view is augmented by radar data, infrared imagery, visible imagery, and tactical information about targets within the field-of-view.
Abstract:
A display screen for displaying multiple sets of information is provided. The display screen includes at least one region of a select color designated to convey a first set of information and a plurality of adjustable areas designated to convey a second set of information. The plurality of adjustable areas overlay at least a portion of the at least one region of select color of the first set of information. Moreover, each adjustable area is defined by an outline and a color encased in the outline.
Abstract:
Vehicle-mounted UWB systems and/or methods for detecting mines and other explosive devices are provided. In certain exemplary embodiments, a system for detecting non-buried mines and/or improvised explosive devices is provided. Distance measuring equipment may be configured to track movement of the system. Substantially forward-looking bistatic antenna transceivers may be capable of collecting range-magnitude radar data over two channels. A first transceiver may capture radar data for a first area, and a second transceiver may capture radar data for a second area. A processor may be configured to: derive range resolution data and cross-range resolution data from the range-magnitude radar data; focus the range resolution data and the cross-range resolution data, based at least on the distance data and an antenna beamwidth pattern associated with the antenna transceivers; and, “and” data for portions of the first area and the second area that overlap.
Abstract:
Embodiments of the invention provide a method and apparatus for indicating aircraft height relative to an obstruction in a terrain awareness warning system. The method includes receiving data indicative of geographic features of an obstruction, lateral distance of the geographic feature from an aircraft, height and flight path of the aircraft, calculating a projected height of the aircraft at the location of the obstruction using the data, generating a result signal, and displaying a colored indication on a display screen based on the result signal. The apparatus includes inputs for signals from instruments measuring height, flight path, and location of an aircraft, as well as an input for an instrument providing information about geographic features of terrain surrounding the aircraft. The apparatus includes a means for employing the signals to calculate an effective height of the aircraft relative to the terrain, and a screen display for graphically displaying the results of the calculation.
Abstract:
The present invention provides an electromagnetic prober comprising a transmission antenna, a reception antenna, a reception signal processing section for generating an analytic signal on the basis of a detection signal of the reception antenna, and an analytic processing section for performing a predefined analytic process on the basis of the analytic signal, wherein the analytic processing section includes in-medium dielectric constant calculation means which divides the analytic signal into a plurality of time-based ranges and performs a predefined computation on average cycle periods in the respective time-based ranges of the analytic signal to calculate average dielectric constants in depth ranges of the medium corresponding to the respective time-based ranges. Thus, even an unskilled person can easily measure a dielectric constant at each depth level in the medium to determine a depth at which an object to be surveyed is present.
Abstract:
Embodiments of the invention provide a method and apparatus for indicating aircraft height relative to an obstruction in a terrain awareness warning system. The method includes receiving data indicative of geographic features of an obstruction, lateral distance of the geographic feature from an aircraft, height and flight path of the aircraft, calculating a projected height of the aircraft at the location of the obstruction using the data, generating a result signal, and displaying a colored indication on a display screen based on the result signal. The apparatus includes inputs for signals from instruments measuring height, flight path, and location of an aircraft, as well as an input for an instrument providing information about geographic features of terrain surrounding the aircraft. The apparatus includes a means for employing the signals to calculate an effective height of the aircraft relative to the terrain, and a screen display for graphically displaying the results of the calculation.
Abstract:
A method for producing, from passive sonar data, operational images interactively controlled by an operator, continuously adjusted according to operational requirements and compatible with changing information requirements in real time. The invention uses a method for representing a multidimensional data field on a display screen which uses the screen co-ordinates for two dimensions of data and at least one of three color perception components among luminosity, hue and saturation for three other dimensions of the data, to produce bearing-time, azimuth-time, or frequency-time (circulating lofar) or frequency-bearing images with representation of frequencies by hue or interactive filtering.
Abstract:
While successively varying its orientation at specific intervals, a detecting apparatus transmits pulsed radio waves from an antenna (1), and data corresponding to input levels derived from one sweep are written in a primary memory (4). Output values obtained in preceding signal processing operation are written in a secondary memory (9). A signal comparator circuit (7) determines current output values based on the input levels of the primary memory (4) and the preceding output values of the secondary memory (9) by reference to a table (8) and writes the current output values thus obtained in the secondary memory (9). The detecting apparatus causes display brilliance or color between a blip exhibiting large fluctuation in received signal strength and a blip exhibiting small fluctuation in received signal strength. Alternatively, the detecting apparatus causes the pattern of fluctuation in display brilliance or color according to fluctuation in received signal strength at the same point or at nearby points to vary from one transmit/receive cycle to another depending on whether the received signal strength has once exceeded a specified value or not.
Abstract:
An improved precision approach radar (PAR) system using an integrated digital display for displaying the relative position of one or more targets, e.g., aircraft, to a preferred glide path and azimuth course line. A preferred PAR system uses a radar head which emits a pair of scanned radar beams and interprets reflected responses to individually determine aircraft targets, weather patterns and/or obstructions and displays each reflection category as a different pattern, preferably color coded, on an essentially non-flickering monitor.
Abstract:
An airport surface traffic surveillance and automation system addresses a wide variety of airport surface conflict scenarios using a combination of runway-status lights, controller alerts, and enhanced controller displays. Runway-status lights, composed of runway-entrance lights and takeoff-hold lights, provide alerts directly to pilots and vehicle operators, to prevent runway incursions before they happen. Controller alerts are used to direct a controller's attention to existing conflicts between aircraft on or near the runways. Enhanced displays present symbology to describe aircraft position, size, direction and speed of motion, altitude, aircraft flight number, and equipment type. Aircraft on approach to runways are also depicted on the displays. The invention features an airport surveillance system, having a radar data interface for receiving radar data from a radar source at a first data rate and for outputting radar data at a second data rate less than the first data rate, and a radar target processor coupled to the radar data interface. The radar target processor includes a clutter rejecter for generating a clutter map of the clutter signals in the radar data, and for substantially removing the clutter signals from the radar data using the clutter map, a morphological processor to receive radar data from the clutter rejecter and for detecting from the radar data target objects using the morphology of the target object, a multipath processor to receive radar data from the morphological processor and for detecting and removing from the radar data false targets resulting from multipath radar reflections, and a target tracker to receive radar data from the multipath processor and for tracking the path of target objects on or near the airport surface.