摘要:
The present invention relates to an energy harvester device, which includes an elongate, planar resonator beam comprising a piezoelectric material and side walls extending between first and second ends; a base connected to the resonator beam at the first end with the second end being freely extending from the base as a cantilever; and a mass attached to the second end of the resonator beam. The side walls are continuously curved within the plane of the resonator beam. Also disclosed are a system containing the device, and methods of using and making the device.
摘要:
Separators and shakers are disclosed with real time monitoring of screen condition; killing apparatus for killing living things in fluid flowing from a separator or shaker; and/or heating apparatus for heating material fed to or flowing from a separator or shaker. This abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure and is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims, 37 C.F.R. 1.72(b).
摘要:
An auxiliary device including an energy harvester and an electronic device including the auxiliary device are provided. The auxiliary device includes: a housing; a storage module which is moveable within the housing; and at least one piezoelectric transducer which disposed in the housing, such that a motion of the storage module causes a deformation of the piezoelectric transducer, thus generating electric energy. An end of the piezoelectric transducer may be fixedly connected to the storage module.
摘要:
A device able to generate electrical power through relative rotational motion of first (370, 380) and second (200, 230) principal components around an axis of rotation (220); wherein: the first and second principal components comprise an arrangement of piezoelectric elements (380) and permanent magnets (230, 370) such that the interaction between these magnets and piezoelectric elements, in use, makes it possible to generate electricity; and wherein: the second principal component (200, 230) comprises a centre of mass offset from the axis of relative rotation (220) such that the response of the second principal component (200, 230) to either gravitational or inertial forces is a relative rotation of the second principal component (200, 230) in relation to the first principal component (370, 380); the first principal component (370, 380) being fixedly attached to the moving host structure (100).
摘要:
A self-powered piezoelectric energy harvesting microsystem device has CMOS integrated circuit elements, contacts and interconnections formed at a proof mass portion of a die region of a semiconductor wafer. Piezoelectric energy harvesting unit components connected to the integrated circuit elements are formed at a thinned beam portion of the die region that connects the proof mass portion for vibration relative to a surrounding anchor frame portion. A battery provided on the proof mass portion connects to the integrated circuit elements. In a cantilever architectural example, the battery is advantageously located at a distal end of the proof mass portion, opposite the joinder with frame portion via the beam portion.
摘要:
A gas turbine engine includes a compressor section, a combustor section and a turbine section mounted relative to an engine static structure. A module includes instrumentation that is mounted to the engine static structure. The module includes an energy harvesting power source that is configured to provide electricity to the instrumentation during engine operation and is independent of an external electrical power source.
摘要:
A method for harvesting energy from an input deflection. The method including: storing mechanical potential energy in at least one spring element resulting from an acceleration of a mass connected to the at least one spring element; transferring the stored potential energy to a flexible element to deflect the flexible element; and converting the deflection of the flexible element to electrical energy by compressing at least one piezoelectric element due to the deflection.
摘要:
Multi-Mechanism Energy Harvesters (MMEHs) combining magnetostrictive and inductive mechanisms with a shape and size similar to an AA battery. Included are MMEHs with (a) an inductive mode: a cylindrical tube, a rod lengthwise within the tube, permanent magnets with opposing polarities at opposing ends of the tube, an annular oscillatory magnet in the tube and between the magnets and around the rod; and a primary coil around the tube and oscillatory magnet, such that relative movement between the magnet and coil induces electrical current in the coil; and (b) a magnetostrictive mode comprising: piezoelectric cymbal transducers on opposing ends of the tube and comprising a magnetostrictive material surrounded by a secondary coil, such that movement of the magnetostrictive material induces voltage in the secondary coil. During use, electrical energy can be harvested from the relative motion between the magnet and coil and from the magnetostrictive material.
摘要:
A smart material actuator having more than two actuating arms, more than two mechanical webs, and being driven by a piezo or other smart material device within an enclosed compensator, and which may be adapted for use as an actuator, an energy capture device, or a sensor. In certain embodiments, the smart material actuator can also operate as the driver for an audio speaker.
摘要:
An energy harvesting device includes a MEMS composite transducer. The MEMS composite transducer includes a substrate. Portions of the substrate define an outer boundary of a cavity. A MEMS transducing member includes a beam having a first end and a second end. The first end is anchored to the substrate and the second end cantilevers over the cavity. A compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member. A second portion of the compliant membrane is anchored to the substrate. The compliant member is configured to be set into oscillation by excitations produced externally relative to the energy harvesting device.