Abstract:
A systematic approach to producing multi-dimensional photon images on a computer platform having applications to a plurality of input image(s) from various sources, and applications to coordinate and adjust numerous variables which determine the quality of the image, such as the size of the imported images, the output image size, the resolving power of the viewing screen and the width of the resolving elements, the dots per inch of the output device (or pixels per inch), the desired nearest object, the desired furthest object and the determination of the central or the “key subject”, rules of interphasing, the number of frames or layers, the minimum parallax, and the maximum parallax, and, thus, provide a digital multi-dimensional image without jumping images or fuzzy features or other visual distortions by creating high quality output images both in the form of a printed hardcopy or as a viewed image on an appropriate viewing device. The digital multi-dimensional image platform based system controls the position and path of light from the original object to the human visual system.
Abstract:
A method for a production of a lenticular image. The method comprises feeding a lenticular printing substrate having a corrugated side and a printing side into a digital printing press, feeding at least one nontransparent ink to set a substantially nontransparent layer on a printing blanket of the printing press, feeding a plurality of colored inks to set an interlaced color image layer on top of the substantially nontransparent layer on the printing blanket, and printing with the printing blanket onto the printing side.
Abstract:
A system for distributing data that represents and can be converted into a physical object such as a printed photograph or three-dimensional “3D printed” object provides a variety of user controls to direct the flow of data and restrict the use of consumable supplies.
Abstract:
A method of setting a plurality of depth values of a plurality of objects in a scene. The method comprises providing an image dataset depicting a scene comprising a plurality of objects having a plurality of depth values with a plurality of depth differences thereamong, selecting a depth range, simultaneously adjusting the plurality of depth values while maintaining the plurality of depth differences, the adjusting being limited by the depth range, and instructing the generation of an output image depicting the scene so that the plurality of objects having the plurality of adjusted depth values.
Abstract:
The present invention provides stereoscopic prints with reduced image coarseness. A stereoscopic print comprises a lenticular lens sheet and a dot image print that is glued to the back surface of the lenticular lens sheet. Multiple image strips that form the dot image print each include a small unit that enables tone representation, and for each color plate, multiple reference positions are set in each of the smallest units. In forming the dot image print, amplitude-modulated screening is employed to print dots in longitudinal directions of the multiple image strips from each of the reference positions.
Abstract:
A method of creating a lenticular imaging article. The method comprises printing an interlaced composite image according to a reference grid of a printer, providing a lenticular lens sheet having a plurality of parallel lenticular lines between a plurality of lenslets, selecting an acute angle for an intersection between the first and second axes according to a function of a resolution of the interlaced composite image and a pitch of the lenticular lens sheet, and positioning the lenticular lens sheet so that the intersection forms the acute angle.
Abstract:
A method for screening color separations of a lenticular image having a lenticular frequency of lenticular lenses for viewing the image, with a lens width l. An amplitude-modulated halftone image is calculated for each color separation at one screen angle with a rational number tangent and screen frequency. The screen has non-orthogonal screen cells spanned by vectors u, v for a specific color separation. A distance k is defined. Directions of vectors u, v relating to perpendicular direction relative to image strips of the lenticular image are defined for the specific color separation. First (n, m) and second (i, j) pairs of rational numbers are defined, to satisfy a system of equations: n*ux+m*vx=0, n*uy+m*vy=1, i*ux−j*vx=k and i*uy−j*vy=0 for vectors u=(ux, uy) and v=(vx, vy) spanning screen cells. A computer program product is also provided.
Abstract:
A method for automatically editing video sequences to produce lenticular grid hardcopies, includes the selection of a first set of images in a shot image sequence; the assignment to each image of the image set of an individual quality factor as a function of image characteristics; the selection of at least one new image set by replacing at least one image of the previously selected image set by a new image of the shot sequence; the preparation of image data to form a lenticular grid hardcopy, based on an image set taken from among the previously selected image sets and with the highest overall quality factor, the overall quality factor being a function of the individual quality factors of the images of each selected image set.
Abstract:
Disclosed herein is a method of making a corresponding lenticular image comprising: providing an output device in communication with a computer having a memory; receiving into the computer memory an interlaced image file; converting the interlaced image file into an output having an output resolution; varying the resolution of the output to define a varied output resolution; and creating a corresponding lenticular image using the output at the varied output resolution. In a preferred embodiment, the output device is a plate setter and the output is a plate. As such, in at least one embodiment, the method is suitable for use with a Computer-to-Plate (“CTP”) system.
Abstract:
A two-dimensional image file is transferred from a client via the Internet or other data transfer network to a server having a processor for performing selectable image data processing, according to a stored program. The processor generates a file for output, formatting and fixation on a micro-optical material. The image fixed on the micro-optical material is seen by the unaided eye as three dimensional, or an action, zoom, flip, or morphing sequence, depending on the image processing selected. For three-dimensional imaging the processor assigns regions within the image to different image surfaces, and displaces each according to multiple viewing angles. The image surfaces are interphased into a single data file which is output and fixed, by printing or photographic processes, on the micro-optical material. The printed image is either printed directly on the micro-optical material or laminated. The image may also be viewed through a CRT having an overlaid micro-optical material.