Abstract:
A simple, passive and rugged device for measuring the flow rate of liquid. A variable area obstruction valve, a differential pressure sensor and a densitometer are combined in a single housing to provide for a highly accurate and precise measure of mass flow.
Abstract:
An improved flow measuring device, such as a mass flow meter or mass flow controller, providing a high turn-down ratio as compared to prior art devices. In accordance with various embodiments of the invention, a flow sensor includes a sensor flow path that includes one or more restrictions configured to provide the sensor flow path with a non-linear relationship between a pressure drop across the sensor flow path and the flow of fluid through the flow sensor conduit. Such a flow sensor preferably achieves a high turn-down ratio by way of a variable bypass ratio that is directly proportional to the sensor tube mass flow rate so that the turn-down ratio of the mass flow controller will be ideally proportional to the square of the turndown achievable by the flow sensor conduit fluid sensing portion alone. In some embodiments, the restriction can be employed as a part of a fluid seal having an orifice and disposed between a flow sensor portion of a flow meter and a bypass portion of the flow meter.
Abstract:
In an adaptor for a flow sensor, a tubular body is adapted to allow respiratory gas to pass through. At least one fluid-resistant member is disposed in the tubular body. At least two pairs of first passages are formed in the fluid-resistant member and adapted to lead out pressures at two positions in the tubular body which are to be detected by the flow sensor.
Abstract:
Provided are an orifice member, and a differential-pressure flow meter and a flow-regulating device using the orifice member, that allow purging to be carried out easily when changing the fluid to be circulated, that are less likely to cause contamination and leaching of impurities to the circulated fluid, and that can be easily produced. The flow-regulating device includes a first pressure-measuring device (object to be connected to) that is connected to one end of the orifice member, and a second pressure-measuring device (object to be connected to) that is connected to the other end of the orifice member, and a flow-regulating valve that is connected to the downstream side of the differential-pressure flow meter, which includes the above-mentioned units. In the orifice member, a tube portion, one end of which is connected to the first pressure-measuring device and other end of which is connected to the second pressure-measuring device and whose internal part forms a channel connecting the first and second pressure-measuring devices, and an orifice provided inside the tube portion are integrated.
Abstract:
A method and apparatus for measuring gas flow are provided. In one embodiment, a calibration circuit for gas control may be utilized to verify and/or calibrate gas flows utilized for backside cooling, process gas delivery, purge gas delivery, cleaning agent delivery, carrier gases delivery and remediation gas delivery, among others.
Abstract:
A system and method for precisely detecting very small distances between a measurement probe having an elongated nozzle with a relatively long and thin orifice. The proximity sensor uses a constant gas flow and senses a mass flow rate within a pneumatic bridge to detect very small distances. The system and method use a flow restrictor and/or snubber made of porous material and/or a mass flow rate controller that in various combinations allow for detection of very small distances in the nanometer to sub-nanometer range.
Abstract:
Apparatus and methods for operating a dual chamber orifice fitting. The dual chamber orifice fitting comprises a body having a lower chamber and a top having an upper chamber. An aperture connects the upper chamber to the lower chamber. A closure member is pivotally mounted to the fitting and pivots about a first axis between a first position and a second position. A pivot arm is rotatably mounted to the body and engages the closure member so that rotation of the pivot arm about a second axis pivots said closure member about the first axis between the first and second positions.
Abstract:
A method for installing risers so they extend from a FPU (floating production unit) to multiple subsea hydrocarbon wells of an oil field, which avoids damage to the pipe sections and that is economical. As pipe sections are connected to a near end (56) of a pipe string portion (68B-68D) that lies at the FPU, a tug boat (30) pulls the far end (65) of the pipe string toward a well head. Initially, a long pull line (34) extends from a winch (32) on the tug boat, in a double catenary curve to the far end of the pipe string. The winch is operated to shorten the pull line until the pipe string extends in a double catenary curve (60). Tension in the pipe string is maintained at a proper level during installation by maintaining the near end portion of the pipe string so it extends at a near end angle (70) to the vertical that continually lies within a predetermined range, such as from 3° to 12°.
Abstract:
A flow restrictor (30) for a mass flow metering device formed of a solid material and slots (32) originating from an outer surface towards inward.
Abstract:
A system for dispensing cryogenic liquid to a use device includes a bulk storage tank providing LNG to a sump containing a meter submerged in LNG. A temperature probe is also submerged in the LNG. A dispensing line is positioned between the meter and dispensing hose and includes a dispensing valve. A drain line bypasses the dispensing valve and features a check valve so that LNG trapped in the hose after dispensing is returned to the sump due to pressurization by ambient heat. A capacitance probe is submerged in the LNG in the sump and provides a dielectric that is compared by a microprocessor with the dielectric for pure methane at the same temperature to determine the purity of the LNG. An approximate linear relation between density and dielectric may be used to determine density and mass flow for the LNG from the measured dielectric. Alternatively, a density compensation factor based upon the dielectrics may be calculated and applied to the density of pure methane to obtain the density and mass flow of the LNG. A further alternative embodiment substitutes a compensating meter for the capacitor and the equations for the resulting two meters may be solved to determine density and mass flow for the LNG.