摘要:
Disclosed are a method and a device for cooling a high voltage transformer for a microwave oven, in which the high voltage transformer is sealed so as to separate a coil and a core from the outside and to improve a cooling effect, and in which electric connection lines leading from the high voltage transformer are effectively treated and a fixed structure of a container for accommodating the high voltage transformer is improved so as to protect users of the high voltage transformer from dangers such as an electrical shock occurring in inspecting the microwave oven, thereby improving performance and quality of the microwave oven and the high voltage transformer. The method for cooling the high voltage transformer for the microwave oven comprises the steps of: inserting the high voltage transformer into a container with a designated size and sealing the container; injecting a cooling oil into the container so as to absorb heat of a high temperature generated from a coil and a core of the high voltage transformer; and cooling the cooling oil absorbing the heat by radiating the heat via the container exchanging the heat with the outside.
摘要:
A discharge lamp illumination circuit 1 has a DC-AC conversion circuit 3 which effects AC conversion and boosting upon receipt of a DC input, and a starter circuit 4 for supplying a start-up signal to a discharge lamp. Power output from the DC-AC conversion circuit 3 is controlled by control means 6, thereby controlling illumination of a discharge lamp 10. An AC transformer 7 constituting the DC-AC conversion circuit 3 is provided, and a primary circuit and a secondary circuit, both forming part of the AC transformer 7, are insulated from each other. The start-up signal boosted by the AC transformer 7 is superposed on the AC-converted output, and the resultant signal is supplied to the discharge lamp 10. Thus, the need for a starter transformer specifically designed for startup can be obviated.
摘要:
An output choke for a D.C. arc welder comprising a high permeability core with an inductance controlling air gap defined by first and second pole pieces terminating in first and second surfaces facing each other and each having two spaced edges with an intermediate area, said surfaces converging from said intermediate area toward each of said edges to generate a specific cross sectional shape for said gap wherein said choke is large enough to carry at least about 100 amperes of weld current.
摘要:
A transformer, particularly for a voltage converter, has a primary winding having a predeterminable leakage inductance and at least one secondary winding magnetically coupled to the primary winding with a predetermined voltage-transformation ratio. The (primary) leakage inductance is increased as compared with a conventional transformer without violating the limits for implementing an appropriately functioning transformer, and without choosing an additional coil or a larger core than is required for the power transformation, in that the primary winding comprises at least two winding sections whose magnetic couplings to the at least one secondary winding are implemented such that they operate in mutually opposite senses and are arranged such that they are at least substantially magnetically decoupled from one another.
摘要:
A method and apparatus to amplify the magnetic field in an electromagnetic circuit is provided. Amplification factors of several orders of magnitude may be obtained. The system is applicable to a number of different systems, including melt levitation and electromagnetic pumping and propulsion. One embodiment of the invention uses a non-conducting permeable core wound around a dielectric core. An alternating voltage source is connected to a solenoid which is wound around a section of the permeable core. The permeable core has a gap within which a flux concentrating cold crucible is provided. Melt levitation processing takes place within the cold crucible. A fluid redirection skirt having an intake port partially surrounds the gap and conducts fluid through an exhaust nozzle.
摘要:
In a converter which is usable as a kind of DC--DC converter and which comprises a transformer for processing an exciting current into an excited current under influence of an inductance value of the transformer, the inductance value is controlled in compliance with a value of the exciting current. The exciting current is controlled by a current control circuit with reference to the excited current so that exciting current is intermittently supplied to the transformer. While the exciting current is absent during intermittent supply to the transformer, the transformer produces the excited current.
摘要:
A magnetic leakage transformer includes a paired cores each having five straight legs extending in the same direction from a common back beam, and associated with each other so that the leg's ends are opposed to each other with magnetic gaps between the paired central legs and between the two paired magnetic leakage flux legs neighboring at the both sides of the central legs. The opposed two paired five legs produces a paired inner passages into which a first winding unit is inserted and a paired outer passages into which a second one is inserted.
摘要:
A discharge lamp ballast for stabilizing wattage input into a discharge lamp at different levels in two or more ranges comprises a magnetic core forming a closed magnetic circuit. A main winding on the core may be used alone or with an extended winding switched in series, and be connected in series with the lamp across an alternating current source in a lamp operating circuit. A control winding on the core has a triac connected across it to vary the current and thereby the wattage supplied to the lamp in the operating circuit. A pair of gapped shunts, one located between the control winding and the extended winding, and the other between the extended winding and the main winding, assure a proportionally greater control effect on the series reactance in the lamp operating circuit when the extended winding is switched in than when it is not.
摘要:
An electronic ballast system (200) which is coupled to a power source (204) in order to actuate at least one of a pair of gas discharge tubes (202 and 202'). Each of the gas discharge tubes (202, 202') include respective first and second filaments (206, 208 and 206', 208'). The system (200) includes a first transformer (238) which is coupled to the power source (204) and the first transformer (238) includes a primary winding (240) and a secondary winding (242) for establishing an oscillation signal. A first and second transistor network (252 and 254) are feedback coupled to the first transformer (238) for switching a current signal responsive to the oscillation signal. Additionally, a first and second inverter transformers (210 and 212) are provided with each of the inverter transformers (210 and 212) having in tapped windings (288 and 290) respectively, for establishing an induced voltage signal responsive to the current signal. Each of transformers (210 and 212) further include a pair of secondary windings (292, 294) as well as (296, 298). First and second coupling capacitors (308 and 310) are connected to the tapped windings (288 and 290) of the inverter transformers (210 and 212) and filaments (206 and 206') of gas discharge tubes (202 and 202') for discharging the induced voltage signal to the first filaments (206 and 206'). A first and second capacitance tuning network including the elements (312, 314 and 316, 318) are coupled to the tapped windings (288, 290) and the secondary windings (292, 294 and 296, 298) of the inverter transformers (210 and 212) for modifying a resonant frequency and a duty factor of a signal pulse generated in the inverter transformers (210 and 212).
摘要:
A magnetic transformer switch which switches its primary flux path upon conduction in its secondary and the combination thereof with a fluorescent lamp in which the heater current is reduced upon lamp ignition by reason of the current in the heater winding in the secondary being reduced upon the primary flux path being switched. A unique construction minimizes both electromagnetic interference and induction losses.