Graphene-containing rare earth permanent magnet material and preparation method thereof

    公开(公告)号:US11626223B2

    公开(公告)日:2023-04-11

    申请号:US17382796

    申请日:2021-07-22

    摘要: The present invention involves a graphene-containing rare earth permanent magnet material and preparation method thereof. The graphene-containing rare earth permanent magnet material, comprising: 20.6 to 23.4 weight percent of neodymium, 6.6 to 7.5 weight percent of praseodymium, 0.95 to 1.20 weight percent of boron, 0.4 to 0.6 weight percent of cobalt, 0.11 to 0.15 weight percent of copper, 2.0 to 2.4 weight percent of lanthanum, 1.7 to 2.1 weight percent of cerium, 1 to 5 weight percent of graphene, a remainder being iron. The graphene-containing rare earth permanent magnet material exhibits excellent temperature resistance, good conductivity and magnet properties even without any heavy rare earth elements like terbium or dysprosium, which dramatically reduces the cost, promotes the efficient utilization of rare earth resources and improves product quality. The preparation method within this invention is simple to realize, easy to control, cost-effective and has high production efficiency and stable product performances.

    Method for producing sintered member, and sintered member

    公开(公告)号:US11623275B2

    公开(公告)日:2023-04-11

    申请号:US17051398

    申请日:2019-05-17

    摘要: A method for producing a sintered member, including the steps of: preparing a raw powder; press-forming the raw powder to produce a green compact; and sintering the green compact by high-frequency induction heating, wherein a temperature of the green compact in the sintering step is controlled to satisfy all the following conditions (I) to (III): (I) the temperature is increased without maintaining the temperature in a temperature range equal to or higher than an A1 point of an Fe—C phase diagram and lower than the sintering temperature of the green compact, (II) a heating rate is set to 12° C./s or more in a temperature range of the A1 point to an A3 point of the Fe—C phase diagram, and (III) a heating rate is set to 4° C./s or more in a temperature range of the A3 point of the Fe—C phase diagram to the sintering temperature of the green compact.

    HIGH STRENGTH STAINLESS STEEL MATERIAL

    公开(公告)号:US20230059069A1

    公开(公告)日:2023-02-23

    申请号:US17727418

    申请日:2022-04-22

    摘要: Methods for improving a toughness and a strength of a stainless steel material are described herein. For example, a high strength stainless steel material can comprise at least 11 wt. % Cr, between 0.01 wt. % and 1.0 wt. % Ni, more 0 wt. % Mo, more than 0 wt. % W, more than 0 wt. % Ti, more than 0 wt. % Nb, and more than 0 wt. % V. In some examples, the high strength stainless steel material can be heat treated with at least one quench treatment and at least one tempering heat treatment. In some examples, the high strength stainless steel material can comprise between 0.01 wt. % and 0.5 wt. % Ni, no more than 0.25 wt. % Mo, no more than 0.1 wt. % W, no more than 0.1 wt. % Ti, no more than 0.1 wt. % Nb, and no more than 0.1 wt. % V.