Materials And Diagnostics For Hydrogen Service Environments

    公开(公告)号:US20230280191A1

    公开(公告)日:2023-09-07

    申请号:US17685207

    申请日:2022-03-02

    IPC分类号: G01D5/26 G01N17/00 G01N17/04

    摘要: HIC-resistant materials may include sensors embedded within or otherwise coupled thereto for use in a hydrogen service environment. In an example, a diagnostic system includes a first sensor embedded within a structural metal for exposure to hydrogen for generating a signal response to both the hydrogen and one or more parameter. A second sensor is embedded within the structural metal for generating another signal response to the one or more parameter. A hydrogen-suppressing layer is provided to suppress any response of the second sensor to the hydrogen. A controller in communication with the first and second sensors distinguishes the signal response of the first sensor from the signal response of the second sensor to characterize the hydrogen and the one or more other parameter.

    POLYMER BLENDS FOR USE IN WELLBORE APPLICATIONS

    公开(公告)号:US20240287377A1

    公开(公告)日:2024-08-29

    申请号:US18657276

    申请日:2024-05-07

    摘要: The present disclosure provides elastomer blends comprising mixtures of partially fluorinated elastomers, such as tetrafluoroethylene propylene elastomers (FEPM or TFEP) and fluorocarbon rubbers, such as vinylidene fluoride-based elastomers (FKM or FEP). The elastomer blends can be prepared using two-roll mills, internal mixers, or other mixing technique and can be molded into seals, gaskets, o-rings or other articles using extrusion, injection molding, compression molding or the like. The resultant elastomeric articles can provide good sealing performance, including at moderate or low temperatures, and exhibit good chemical compatibility and resistance when exposed to common wellbore environments. In some cases, the elastomer blends can provide performance characteristics previously only available from perfluorinated elastomers (FFKM), but without requiring the complex processing conditions associated with preparing perfluorinated elastomers.

    POLYMER BLENDS FOR USE IN WELLBORE APPLICATIONS

    公开(公告)号:US20230082733A1

    公开(公告)日:2023-03-16

    申请号:US17474592

    申请日:2021-09-14

    摘要: The present disclosure provides elastomer blends comprising mixtures of partially fluorinated elastomers, such as tetrafluoroethylene propylene elastomers (FEPM or TFEP) and fluorocarbon rubbers, such as vinylidene fluoride-based elastomers (FKM or FEP). The elastomer blends can be prepared using two-roll mills, internal mixers, or other mixing technique and can be molded into seals, gaskets, o-rings or other articles using extrusion, injection molding, compression molding or the like. The resultant elastomeric articles can provide good sealing performance, including at moderate or low temperatures, and exhibit good chemical compatibility and resistance when exposed to common wellbore environments. In some cases, the elastomer blends can provide performance characteristics previously only available from perfluorinated elastomers (FFKM), but without requiring the complex processing conditions associated with preparing perfluorinated elastomers.

    HIGH STRENGTH STAINLESS STEEL MATERIAL

    公开(公告)号:US20230059069A1

    公开(公告)日:2023-02-23

    申请号:US17727418

    申请日:2022-04-22

    摘要: Methods for improving a toughness and a strength of a stainless steel material are described herein. For example, a high strength stainless steel material can comprise at least 11 wt. % Cr, between 0.01 wt. % and 1.0 wt. % Ni, more 0 wt. % Mo, more than 0 wt. % W, more than 0 wt. % Ti, more than 0 wt. % Nb, and more than 0 wt. % V. In some examples, the high strength stainless steel material can be heat treated with at least one quench treatment and at least one tempering heat treatment. In some examples, the high strength stainless steel material can comprise between 0.01 wt. % and 0.5 wt. % Ni, no more than 0.25 wt. % Mo, no more than 0.1 wt. % W, no more than 0.1 wt. % Ti, no more than 0.1 wt. % Nb, and no more than 0.1 wt. % V.