Abstract:
A method of processing an on-press developable lithographic printing plate involving the removal of the overcoat after laser imaging and before on-press development is described. The plate comprises a substrate, an on-press ink and/or fountain solution developable photosensitive layer, and an overcoat. The laser imaged plate is mechanically stripped off the overcoat, and then developed with ink and/or fountain solution on a lithographic press. Such a process allows the use of overcoat to achieve faster photospeed and improved durability of the plate without having various issues as related to overcoat such as contamination to the fountain solution, difficulty to remove of certain overcoat, and limited white light stability.
Abstract:
A lithographic printing plate precursor is provided that, using laser exposure, exhibits an excellent capacity for plate inspection, an excellent on-press development performance or gum development performance, and an excellent scumming behavior, while maintaining a satisfactory printing durability. There is also provided a method of lithographic printing that uses this lithographic printing plate precursor. The lithographic printing plate precursor comprises an image recording layer having (A) a nonionic polymerization initiator that contains at least two cyclic imide structures, and (B) a compound that has at least one addition-polymerizable ethylenically unsaturated bond.
Abstract:
On-press development of an imaged printing plate on a plate cylinder, in which ink is applied by an ink form roll, a blanket roll is in contact with the plate, a rubber roll is opposed to the blanket roll, and printable media passes between the blanket roll and the rubber roll. The plate comprises a substrate carrying an imaged coating, in which nonimage areas have cohesion C1, adhesion to the substrate A1, and adhesion to the applied ink A3 and image areas have cohesion C2, adhesion to the substrate A2, and adhesion to the applied ink A4. The ink has cohesion C3 and adhesion A5 to the blanket roll. The nonimage areas have adhesion A6 to the printable medium and the ink has adhesion A7 to the medium. The adhesions and cohesions are such that the blanket roll pulls the ink from the plate and the ink pulls the nonimage areas from the substrate as undissolved particles that are transferred by the blanket with the ink to the printable media.
Abstract:
A lithographic printing plate precursor includes, in the following order: a support; an image-recording layer which is capable of forming an image by removing an unexposed area with at least one of printing ink and dampening water on a printing machine after exposure and contains (A) an infrared absorbing dye, (B) a polymerization initiator, (C) a polymerizable compound and (D) a binder polymer having an alkylene oxide group; and a protective layer containing (E) a hydrophilic polymer containing at least a repeating unit represented by the formula (1) as defined herein and a repeating unit represented by the formula (2) as defined herein.
Abstract:
A lithographic printing plate precursor has a substrate and an infrared radiation-sensitive composition comprising a polymeric binder, a free radical polymerizable system consisting of at least one polymerizable component, a compound capable of absorbing infrared radiation, and an initiator system comprising an iodonium salt that is capable of producing free radicals; and at least 1% and up to and including 10% by weight, based on the infrared-sensitive composition, of at least one mono- or polycarboxylic acid having an aromatic moiety.
Abstract:
A method of treating an on-press developable lithographic printing plate with a treating solution after imagewise exposure and before on-press development is described. The plate comprises on a substrate a photosensitive layer developable with ink and/or fountain solution and capable of hardening upon exposure to a radiation. The plate is imagewise exposed with a radiation, overall treated with a treating solution to cause at least one chemical or physical change in the photosensitive layer or on the substrate surface, and then on-press developed with ink and/or fountain solution. Such a treatment allows improvement on the performance of the imagewise exposed plate by, for example, improving the white light stability, forming visible imaging, increasing the hydrophilicity of the substrate, or increasing the developability of the photosensitive layer.
Abstract:
A method of treating an on-press developable lithographic printing plate with an aqueous treating solution after imagewise exposure and before on-press development is described. The plate comprises on a substrate a photosensitive layer developable with ink and/or fountain solution and capable of hardening upon exposure to a radiation. The plate is imagewise exposed with a radiation, overall treated with a treating solution to cause at least one chemical or physical change in the photosensitive layer or on the substrate surface, and then on-press developed with ink and/or fountain solution. Such a treatment allows improvement on the performance of the imagewise exposed plate by, for example, improving the white light stability, forming visible imaging, increasing the hydrophilicity of the substrate, or increasing the developability of the photosensitive layer.
Abstract:
An image-forming method includes: exposing a negative type image-forming material including a support and an image-recording layer containing a binder polymer containing at least one group capable of being converted to a sulfonate upon a reaction with an aqueous solution containing at least one of a sulfite and a bisulfite, a sensitizing dye, a polymerization initiator, and a compound having an ethylenically unsubstituted bond; and removing an unexposed area of the image-recording layer with an aqueous solution containing at least one of a sulfite and a bisulfite.
Abstract:
A method of preparing a lithographic printing plate in which no pre-heat step is used comprising the steps of:—providing a lithographic printing plate precursor comprising a support and a photopolymerizable image-recording layer, the image-recording layer comprising a monomer and a binder;—image-wise exposing the precursor in an exposure unit;—off press developing the exposed precursor with an aqueous solution in a processing unit; characterized in that the ratio of the total amount of monomer to the total amount of binder is at least 1 and the time lapse between exposing an image-area of the precursor and contacting the image-area with the aqueous solution is at least 1 minute.
Abstract:
A photosensitive composition includes a cyanine dye that has, on a methine chain thereof, a substituent which is a cation moiety of an onium salt structure.