Abstract:
Remote office deduplication comprises calculating one or more fingerprints of one or more data blocks, sending the one or more fingerprints to one or more backup servers via a network interface, receiving from the one or more backup servers an indication of which one or more data blocks corresponding to the one or more fingerprints should be sent to the one or more backup servers, and if the indication indicates one or more data blocks to be sent to the one or more backup servers, sending the one or more data blocks to the one or more backup servers via the network interface.
Abstract:
A storage architecture of a storage system environment has a storage connector interface configured to exchange data directly between flash storage devices on a server and a storage array of the environment so as to bypass main memory and a system bus of the server. According to one or more embodiments, the storage connnector interface includes control logic configured to implement the data exchange in accordance with one of a plurality of operational modes that deploy and synchronize the data on the flash storage devices and the storage array. Advantageously, the storage connector interface obviates latencies and bandwidth consumption associated with prior data exchanges over the main memory and bus, thereby enhancing storage architecture performance.
Abstract:
Methods and systems for providing a framework for automated storage processes and flexible workflow are disclosed. The framework provides a user workflow design tool to create and/or customize workflow automation processes without needing to write software code. Additionally, the workflow design tool provides a mechanism that allows the workflow to make decisions, such as selecting storage resources.
Abstract:
Data storage and management systems can be interconnected as clustered systems to distribute data and operational loading. Further, independent clustered storage systems can be associated to form peered clusters. As provided herein, methods and systems for creating and managing intercluster relationships between independent clustered storage systems, allowing the respective independent clustered storage systems to exchange data and distribute management operations between each other while mitigating administrator involvement. Cluster introduction information is provided on a network interface of one or more nodes in a cluster, and intercluster relationships are created between peer clusters. A relationship can be created by initiating contact with a peer using a logical interface, and respective peers retrieving the introduction information provided on the network interface. Respective peers have a role/profile associated with the provided introduction information, which is mapped to the peers, allowing pre-defined access to respective peers.
Abstract:
A storage system provides highly flexible data layouts that can be tailored to various different applications and use cases. The system defines several types of data containers, including “regions”, “logical extents” and “slabs”. Each region includes one or more logical extents. Allocated to each logical extent is at least part of one or more slabs allocated to the region that includes the extent. Each slab is a set of blocks of storage from one or more physical storage devices. The slabs can be defined from a heterogeneous pool of physical storage. The system also maintains multiple “volumes” above the region layer. Each volume includes one or more logical extents from one or more regions. A foreign LUN can be assimilated into the system by defining slabs as separate portions of the foreign LUN. Layouts of the extents within the regions are not visible to any of the volumes.
Abstract:
Various techniques and hardware are described for retrieving information in a processing system. In one embodiment, a method is provided for retrieving information in a processing system that includes a central processing unit and a service processor. Here, the service processor retrieves central processing unit information from the central processing unit and resets the processing system after the retrieval of the central processing unit information.
Abstract:
One or more techniques and/or systems are provided for hosting a virtual machine from a snapshot. In particular, a snapshot of a virtual machine hosted on a primary computing device may be created. The virtual machine may be hosted on a secondary computing device using the snapshot, for example, when a failure of the virtual machine on the primary computing device occurs. If a virtual machine type (format) of the snapshot is not supported by the secondary computing device, then the virtual machine within the snapshot may be converted to a virtual machine type supported by the secondary computing device. In this way, the virtual machine may be operable and/or accessible on the secondary computing device despite the failure. Hosting the virtual machine on the secondary computing device provides, among other things, fault tolerance for the virtual machine and/or applications comprised therein.
Abstract:
Some aspects of the disclosure relate to a data storage system that includes multiple memory device storage devices. If a memory device of a memory device array fails within a first data storage device, some portions of the lost or corrupted data from the failed memory device are recovered by reading them from a second data storage device. Other portions of the lost or corrupted data from the failed memory device are recovered from parity information in the first data storage device.
Abstract:
Systems and associated methods for flexible scalability of storage systems. In one aspect, a storage controller may include an interface to a fabric adapted to permit each storage controller coupled to the fabric to directly access memory mapped components of all other storage controllers coupled to the fabric. The CPU and other master device circuits within a storage controller may directly address memory an I/O devices directly coupled thereto within the same storage controller and may use RDMA features to directly address memory an I/O devices of other storage controllers through the fabric interface.
Abstract:
A plurality of storage devices is organized into a physical volume called an aggregate, and the aggregate is organized into a global storage space, and a data block is resident on one of the storage devices of the plurality of storage devices. A plurality of virtual volumes is organized within the aggregate and the data block is allocated to a virtual volume. A physical volume block number (pvbn) is selected for the data block from a pvbn space of the aggregate, and virtual volume block number (vvbn) for the data block is selected from a vvbn space of the selected vvol. Both the selected pvbn and the selected vvbn are inserted in a parent block as block pointers to point to the allocated data block on the storage device.