Traveling wave based fault location using unsynchronized measurements for transmission lines

    公开(公告)号:US11204382B2

    公开(公告)日:2021-12-21

    申请号:US16764695

    申请日:2018-06-14

    Abstract: A method can be used to determine a fault location in a power transmission line that connects a first terminal with a second terminal. Parameters associated with travelling waves are detected from measurements carried out at the first and second terminals. The parameters include arrival times of first and second peaks of the travelling waves at the first and second terminals respectively, and rise times of the first peaks of corresponding travelling waves. A first half, a second half, or a mid-point of the power transmission line is identified as having a fault based on the parameters. The fault location can be estimated based on the arrival times of the first and second peaks of the travelling waves detected from measurements carried out at the first and second terminals, a velocity of propagation of the travelling wave in the power transmission line, and/or a length of the power transmission line.

    RADIATOR FOR A TRANSFORMER HAVING IMPROVED COOLING

    公开(公告)号:US20210383956A1

    公开(公告)日:2021-12-09

    申请号:US17286021

    申请日:2019-10-02

    Abstract: Radiator for a transformer comprising a plurality of radiator panels with at least a first and a second radiator panel extending in a substantially vertical direction, wherein the first and the second radiator panel form an air duct providing a gap there-between having a width of smaller than 90 mm, and wherein a first radio panel bottom edge is located at a lower vertical height position than a second radiator panel bottom edge, wherein the first radiator panel is located at a side of the radiator panel such that the first radiator panel and a transformer side form a transformer air duct wherein the second radio panel bottom edge is located at a larger height than the first radio panel bottom edge and wherein the radiator panels have an aspect ratio greater than 8 of a depth of the radiator panel over a width of the air duct.

    Insulated gate power semiconductor device and method for manufacturing such device

    公开(公告)号:US11189688B2

    公开(公告)日:2021-11-30

    申请号:US17285415

    申请日:2019-09-13

    Abstract: An insulated gate power semiconductor device (1a), comprises in an order from a first main side (20) towards a second main side (27) opposite to the first main side (20) a first conductivity type source layer (3), a second conductivity type base layer (4), a first conductivity type enhancement layer (6) and a first conductivity type drift layer (5). The insulated gate power semiconductor device (1a) further comprises two neighbouring trench gate electrodes (7) to form a vertical MOS cell sandwiched between the two neighbouring trench gate electrodes (7). At least a portion of a second conductivity type protection layer (8a) is arranged in an area between the two neighbouring trench gate electrodes (7), wherein the protection layer (8a) is separated from the gate insulating layer (72) by a first conductivity type channel layer (60a; 60b) extending along the gate insulating layer (72).

    Insulated Gate Power Semiconductor Device and Method for Manufacturing Such Device

    公开(公告)号:US20210320170A1

    公开(公告)日:2021-10-14

    申请号:US17285415

    申请日:2019-09-13

    Abstract: An insulated gate power semiconductor device (1a), comprises in an order from a first main side (20) towards a second main side (27) opposite to the first main side (20) a first conductivity type source layer (3), a second conductivity type base layer (4), a first conductivity type enhancement layer (6) and a first conductivity type drift layer (5). The insulated gate power semiconductor device (1a) further comprises two neighbouring trench gate electrodes (7) to form a vertical MOS cell sandwiched between the two neighbouring trench gate electrodes (7). At least a portion of a second conductivity type protection layer (8a) is arranged in an area between the two neighbouring trench gate electrodes (7), wherein the protection layer (8a) is separated from the gate insulating layer (72) by a first conductivity type channel layer (60a; 60b) extending along the gate insulating layer (72).

    Contact system for electrical current conduction and bus transfer switching in a switchgear

    公开(公告)号:US11114262B2

    公开(公告)日:2021-09-07

    申请号:US16764810

    申请日:2018-07-13

    Abstract: A switchgear having bus transfer current switching capability by a turn and twist mechanism that includes a contact system for electrical current conduction and bus transfer switching is provided. The contact system has fixed and movable contact assemblies. Each contact assembly includes main contacts and arcing contacts. The arcing contacts are for bus transfer switching. The movable contact assembly includes a current path pipe and an end piece. The current path pipe is a cylindrical pipe, and the end piece is a rectangular block. The movable contact assembly includes a movable main contact provided on the rectangular block, and a movable arcing contact provided at the end of the cylindrical pipe on a portion about the periphery. During engagement, the cylindrical pipe turns about a first axis to bring the contact assemblies proximal to each other, and twists about a second axis for engagement of the main contacts.

    NOZZLE FOR HIGH OR MEDIUM VOLTAGE CIRCUIT BREAKER

    公开(公告)号:US20210265122A1

    公开(公告)日:2021-08-26

    申请号:US17253349

    申请日:2019-08-28

    Abstract: A gas-insulated high or medium voltage circuit breaker comprising: a first arcing contact and a second arcing contact, wherein at least one of the two arcing contact is axially movable along a switching axis, wherein during a breaking operation, an arc between the first arcing contact and the second arcing contact is formed in a arcing region; a buffer housing defining a pressurizing volume; a nozzle arranged at a nozzle side of the pressurizing volume, the nozzle defining a channel connected to the pressurizing volume and directed to the arcing region, for blowing an arc extinguishing gas towards the arcing region during the breaking operation, the nozzle comprising a nozzle front face facing towards the interior of the pressurizing volume.

Patent Agency Ranking