Abstract:
A system for producing a controllable beam of radiation is controllable electronically, and includes no parts that must move relative to one another while in operation to form the beam. The direction and cross-section of the beam may be controlled electronically by controlling an electron beam. Various embodiments provide an X-ray collimator that allows forming a scanning X-ray beam of desired size and flux independently of the aperture material thickness without requiring movement of the aperture or physical components that create the aperture. Some embodiments provide an X-ray collimator that allows forming a scanning X-ray beam of desired size and flux independently of the beam angle.
Abstract:
Methods and an x-ray system for dynamically regulating x-ray dose. An x-ray beam is generated and collimated at a source collimator and detected after the x-ray beam traverses an inspected object. A filter may be dynamically interposed by translation of the filter between a focal spot of the source and the source collimator in such a manner as to maintain the portion of the x-ray beam that traverses the inspected object below a specified limit. Alternatively, an aperture of the source collimator may be varied in size or position relative to the focal spot.
Abstract:
Systems and methods for inspecting an object with a scanned beam of penetrating radiation. Scattered radiation from the beam is detected, in either a backward or forward direction, as is radiation transmitted through the inspected object. The source of penetrating radiation is concealed within an enclosure of a road-worthy vehicle, and detected with a large-area uncollimated detector similarly concealed within the enclosure.
Abstract:
An apparatus for generating a scanned beam of penetrating electromagnetic radiation. An electron beam is incident on a succession of specific locations on a concave anode which emits electromagnetic waves in response thereto, in such a way that electromagnetic waves exiting from an aperture scan over a range of angles within a scan plane in response to angular scanning of the electron beam. The x-ray beam is extracted from the apparatus via one or more exit apertures in the back hemisphere, on the side of the anode onto which the electron beam impinges.
Abstract:
A detector and methods for inspecting material on the basis of scintillator coupled by wavelength-shifting optical fiber to one or more photo-detectors, with a temporal integration of the photo-detector signal. An unpixelated volume of scintillation medium converts energy of incident penetrating radiation into scintillation light which is extracted from a scintillation light extraction region by a plurality of optical waveguides. This geometry provides for efficient and compact detectors, enabling hitherto unattainable geometries for backscatter detection and for energy discrimination of incident radiation. Additional energy-resolving transmission configurations are enabled as are skew- and misalignment compensation.
Abstract:
A system and method for inspecting a vehicle by means of one or more sources and detectors of penetrating radiation. The source(s) and detector(s) are carried on a mobile conveyance and deployed at a point of operation. One source swings away from the conveyance on a deployable member, such as a boom, such that the source can irradiate a vehicle from above or below. A detector deploys outwardly from the mobile conveyance, remaining mechanically coupled to the mobile conveyance in a position in a horizontal plane, such that the detector intercepts penetrating radiation from the source positioned above the inspected vehicle, which penetrating radiation has interacted with the inspected vehicle. A ramp may be provided to allow the inspected vehicle to be driven to a position between the vertically irradiating source and a transmission detector.
Abstract:
The present specification describes a system for synchronizing a transmission detector and a backscatter detector integrated with a portable X-ray scanner. The system includes a transmitter connected with the transmission detector for transmitting the analog detector signal and a receiver connected with the scanner for receiving the transmitted analog detected signal where the transmitter and the receiver operate in the ultra-high frequency range.
Abstract:
Systems and methods for determining a mass of a crop by using at least one X-ray scanner is provided. The method includes obtaining at least two scan images of the crop, where a first of the at least two images is obtained along a first plane relative to the crop and a second of the at least two images is obtained along a second plane relative to the crop, and where the first plane is angularly displaced relative to the second plane, registering the first image and the second image, correcting the registered first and second images, and determining the mass of the crop from the corrected first and second images.
Abstract:
The present specification describes an X-ray detector that includes at least one scintillator screen for absorbing incident X rays and emitting corresponding light rays, a wavelength shifting sheet (WSS) coupled with the at least one scintillator screen for shifting the emitted light rays, at least one wavelength shifting fiber (WSF) coupled with at least one edge of the WSS for collecting the shifted light rays, and a photodetector for detecting the collected light rays.
Abstract:
An X-ray inspection system for scanning objects and providing corresponding contrast controlled scan images is provided. The system includes an X-ray source configured to generate an X-ray beam for irradiating the object where the X-ray source is coupled with at least a first beam filter having a first thickness and a second beam filter having a second thickness greater than the first thickness, a detector array, a processing unit, a user interface configured to receive a user input indicative of a desired level of contrast in an image, and a controller configured to adjust a position of at least one of the first or second beam filters based on the user input indicative of the desired level of contrast in the at least one image.