Abstract:
A method for printing color images with an ink jet printer. The ink jet printer includes a printhead having printing nozzles arranged in first, second, and third columns. The first, second, and third columns each have a length approximately equal to 3*H, where H represents a length of first, second, and third sections of the second column. The method includes ejecting ink from the nozzles of the first, second, or third sections of the second column during each pass of the printhead over a printing medium as necessitated by characteristics of the color image, advancing the printing medium in the first direction by the length H, and ejecting ink from the nozzles of the first and third columns during every third pass that the printhead makes over the printing medium as necessitated by the characteristics of the color image.
Abstract:
A process of forming a flexible circuit board for ink jetting is provided. The process includes the steps of: providing an insulation tape; forming conductive traces on the insulation tape; and forming a photo-polymer layer filling between the conductive traces, wherein parts of the conductive traces are exposed to form a plurality of contacts. The material of the insulation tape can be polyimide, Teflon, polyamide, polymethylmethacrylate, polycarbonate, polyester, polyamide polyethylene-terephthalate copolymer, or any combination of the above materials. The material of the photo-polymer layer can be solder mask or polyimide.
Abstract:
A tape automated bonding (TAB) device for a printhead cartridge of a printer includes a tape having a region capable of being substantially bisected by a centerline that defines a first side of the tape and a second side of the tape. Located on the tape is a printhead, and a plurality of contacts adapted to receive signals from the printer and to provide the signals to the printhead. The contacts are disposed such that the number of contacts on the first side is different from the number of contacts on the second side. The printhead is centrally aligned with the centerline or centrally offset from the centerline.
Abstract:
A pressure-compensation device for adjusting the backpressure inside the cartridge of an ink jet printer includes an accumulator bag, a resilient element, and a motion element. The accumulator bag, installed inside the cartridge, communicates with the external atmosphere through an air duct. The resilient element, kept at a tension state, has a first end connected with the accumulator bag and a second end connected with the motion element. The resilient element restrains the inflation of the accumulator bag so as to induce a backpressure inside the cartridge. The accumulator bag, gradually inflating along with consumption of the ink inside the cartridge, can move the resilient element and the motion element downwards to keep the resilient element at a stable tension state, and thereby a stable backpressure inside the cartridge can be provided.
Abstract:
A safety socket for avoiding danger of shock due to insertion of alien article into the insertion hole. The socket includes two high and two low fixing seats. Two insulative slide boards are reversely disposed on the fixing seats side by side. The lower edge of each slide board is disposed with an elliptic slot for a pin member to pass therethrough, whereby the slide boards can be limitedly left and right slided. The socket further includes two long and two short leaf springs. The short leaf springs abut against front edges of the slide boards. The long leaf springs are fixed on inner walls of a housing of the socket opposite to the short leaf springs. The long and short leaf springs are disposed with convex contact points opposite to each other. When a plug is not inserted into the socket, the slide boards are pushed by the resilient force of the short leaf springs to the center of the socket away from the long leaf springs so as to open the circuit. While when the plug is inserted into the socket, the contact points of the long and short leaf springs contact with each other to close the circuit.
Abstract:
An automatic power control system, an automatic power control method, a down sampling circuit and a down sampling method. The automatic power control system is incorporated in an optical disc drive comprising a laser diode for receiving a control signal to generate a laser beam; and a photodetector for detecting the laser beam to generate an analog input signal. The automatic power control system comprises an analog-to-digital converter, a down sampling circuit, a comparator, and a digital-to-analog converter. The analog-to-digital converter converts the analog input signal to digital data. The down sampling circuit, coupled to the analog-to-digital converter, comprises a down sampler, a counter, and a controller. The down sampler receives a predetermined amount of digital data to generate representation data. The counter, coupled to the down sampler, calculates the amount of digital data, and resets the down sampler when the amount equals or exceeds the predetermined count. The controller, coupled to the counter, disables the counter when the digital data is invalid. The comparator, coupled to the down sampling circuit, compares the representation data with predetermined target data to generate error data. The digital-to-analog converter, coupled to the comparator, converts the error data to analog to generate the control signal.
Abstract:
A method for deriving precise control over laser power of an optical pickup unit (OPU) includes: providing an analog-to-digital converter (ADC) within an automatic power calibration (APC) circuit to derive a path gain and/or a path offset from the APC circuit; and selectively performing compensation according to the gain and/or the path offset, in order to maintain precision of a relationship between the laser power and a target command utilized for controlling the laser power. An associated APC circuit comprising an ADC and at least one compensation module is further provided. The ADC is utilized for deriving a path gain and/or a path offset from the APC circuit. The compensation module is utilized for selectively performing compensation according to the path gain and/or the path offset, in order to control the laser power by a target command.
Abstract:
The invention provides a sliding mechanism and an electronic device using the same. The sliding mechanism includes a bottom plate, a connection rod, a cover plate, an elastic member, and a connection member. Guiding sections are formed at two sides of the bottom plate, and the bottom plate has a first fastening hole and an arc-shaped groove. The connection rod has a first end and a second end. Sliding portions are formed at two sides of the cover plate to cooperate with the guiding sections to enable the cover plate to slide relative to the bottom plate, and the cover plate has a second fastening hole and a connection hole. The elastic member includes a third end and a fourth end. Furthermore, the connection member slidably fastens the fourth end of the elastic member and the second end of the connection rod to the arc-shaped groove through the connection hole.
Abstract:
A fixing device is provided. The fixing device is fixed to a surface, comprising a sucker, a rack, a gear, a transforming unit and a limiting unit. The rack is connected to the sucker. The gear is engaged to the rack. The transforming unit is connected to the gear. The transforming unit rotates the gear to move the rack between a first position and a second position. The rack pushes the sucker to apply a suction force to the surface when the rack is in the first position, and the suction force of the sucker is released when the rack is in the second position. The limiting unit is connected to the rack to restrict the rack.
Abstract:
An automatic power control system, an automatic power control method, a down sampling circuit and a down sampling method. The automatic power control system is incorporated in an optical disc drive comprising a laser diode for receiving a control signal to generate a laser beam; and a photodetector for detecting the laser beam to generate an analog input signal. The automatic power control system comprises an analog-to-digital converter, a down sampling circuit, a comparator, and a digital-to-analog converter. The analog-to-digital converter converts the analog input signal to digital data. The down sampling circuit, coupled to the analog-to-digital converter, comprises a down sampler, a counter, and a controller. The down sampler receives a predetermined amount of digital data to generate representation data. The counter, coupled to the down sampler, calculates the amount of digital data, and resets the down sampler when the amount equals or exceeds the predetermined count. The controller, coupled to the counter, disables the counter when the digital data is invalid. The comparator, coupled to the down sampling circuit, compares the representation data with predetermined target data to generate error data. The digital-to-analog converter, coupled to the comparator, converts the error data to analog to generate the control signal.