Abstract:
A system and a method to protect an image on a substrate. The method includes forming an unfused toner image, partially fusing the unfused toner image at a first temperature by exposing the composition to radiation to prevent disruption of the image upon application of the wax-hybrid composition to form a partially fused toner image, cooling the partially fused toner image to a second temperature, providing a protective coating composition comprising a wax-hybrid, applying the protective coating composition over the partially fused toner image, permanently fixing the protective coating composition and partially fused toner image to form a final printed image.
Abstract:
Curable monomer that is liquid at 25° C., curable wax and colorant together form a radiation curable ink. This ink may be used to form images by providing the radiation curable ink at a first temperature; applying the radiation curable ink to the substrate to form an image, the substrate being at a second temperature, which is below the first temperature; and exposing the radiation curable ink to radiation to cure the ink.
Abstract:
An ink jet printing device including an ink jet print head and a print region surface toward which ink is jetted from the ink jet print head, wherein a height distance between the ink jet print head and the print region surface is adjustable; wherein the ink jet print head jets an ultra-violet curable phase change ink composition comprising an optional colorant and a phase change ink vehicle comprising a radiation curable monomer, or prepolymer; a photoinitiator; a reactive wax; and a gellant; wherein a print deposited upon the print region surface is Braille, raised print, or a combination of regular print and one or both of Braille and raised print.
Abstract:
Disclosed is a system for embedding and recovering machine readable information on a substrate, including an image forming device containing at least two fluorescent marking materials, wherein the image forming device receives data representative of the machine readable information, and forms an image corresponding to the data in a machine readable code format with the at least two fluorescent marking materials on the substrate, and a document reading device including a radiation emitting unit that emits radiation effecting fluorescence of a first fluorescent marking material and/or second fluorescent marking material, and a reader that detects the data in the image on the image receiving substrate while the first fluorescent marking material and/or second fluorescent marking material is fluorescing.
Abstract:
A radiation curable phase change ink preferably used in piezoelectric ink jet devices includes an ink vehicle that includes at least one gellant comprised of a curable polyamide-epoxy acrylate component and a polyamide component, and at least one colorant. The use of the gellant enables the ink to form a gel state having a viscosity of at least 103 mPa·s at very low temperatures of about 25° C. to about 100° C. The ink may thus be jetted at very low jetting temperatures of, for example, about 40° C. to about 110° C. The ink may be used to form an image by heating the ink to a first temperature at which the ink may be jetted, jetting onto a member or substrate maintained at a second temperature at which the ink forms a gel state, and exposing the ink to radiation energy to polymerize curable components of the ink.
Abstract:
A substantially colorless radiation overcoat composition suitable for overcoating ink-based images and xerographic-based images. The overcoat composition comprises at least one gellant, at least one monomer, at least one substantially non-yellowing photoinitiator, optionally a curable wax, and optionally a surfactant.
Abstract:
Curable monomer that is liquid at 25° C., curable wax and colorant together from a radiation curable ink. This ink may be used to form images by providing the radiation curable ink at a first temperature; applying the radiation curable ink to the substrate to form an image, the substrate being at a second temperature, which is below the first temperature; and exposing the radiation curable ink to radiation to cure the ink.
Abstract:
A variety of UV curable phase change inks are disclosed. The inks possess the characteristic the gloss of printed areas closely matches the gloss of unprinted areas of the substrate. On plain papers the printed and unprinted gloss values are within 5 ggu when measured at 60°. On coated papers, the printed and unprinted gloss values are within 25 ggu when measured at 60°. Although not limited by any theory, it is speculated that the gel rheology of inks of the disclosure conforms well with the paper substrate, providing a rougher low gloss surface on plain paper and a smoother high gloss surface on coated paper.
Abstract:
Methods and devices for forming, such as by printing, high quality, high throughput, ultraviolet curable gel ink images on flexible substrates for packaging applications are disclosed. The methods and devices have excellent image quality and do not require pinning of the ink during color printing or nitrogen inerting during curing.
Abstract:
A phase change ink having an ink vehicle, at least one colorant at least one triamide and at least one bis-urethane. The at least one triamide and at least one bis-urethane assist in dispersing colorants, such as pigments like carbon black, in non-polar ink vehicles. Also, disclosed are methods of making such phase change inks.