Abstract:
A fuel pump includes a housing, and a motor. A single sided impeller has first and second impeller flow channels each including a plurality of vanes. The impeller defines a flow passageway extending therethrough. A cover is attached to the housing and has a cover surface that defines first and second cover flow channels. The cover flow channels receive fuel from inlets formed in the cover. The first and second cover flow channels are aligned with the first and second impeller flow channels and receive fuel through the inlets and deliver fuel to outlets. A body is positioned within the housing and defines an impeller chamber to receive the impeller, and a first outlet passageway fluidically connected to the first cover flow channel and impeller flow channel. A second outlet passageway formed within the cover is fluidically connected to the second cover flow channel and impeller flow channel.
Abstract:
A fuel pump is provided having improved efficiency by lowering the wet circle index of the pump while maintaining robust axial clearances to meet the demands of an automotive application. One embodiment includes a fuel pump for pressurizing fuel for delivery to an engine of a motor vehicle. The fuel pump generally comprises a housing, a motor, a single sided impeller, a cover and a body. The provision of a single sided impeller greatly reduces the wet circle index and improves the pump efficiency. The cover, impeller, and body are structured to axially balance the impeller which is free floating on the shaft of the motor.
Abstract:
A fuel pump is provided having improved efficiency by lowering the wet circle index of the pump while maintaining robust axial clearances to meet the demands of an automotive application. One embodiment includes a fuel pump for pressurizing fuel for delivery to an engine of a motor vehicle. The fuel pump generally comprises a housing, a motor, a single sided impeller, a cover and a body. The provision of a single sided impeller greatly reduces the wet circle index and improves the pump efficiency. The cover, impeller, and body are structured to axially balance the impeller which is free floating on the shaft of the motor.
Abstract:
The present invention provides a system for controlling the speed of a motor by altering the magnetic field of the motor. The system includes field modification module, and a motor having field windings and a rotor. The field windings are configured to receive a driving signal that generates a magnetic field causing a rotation of the rotor. The field modification module is proximate the motor and alters the magnetic field in response to an input signal thereby controlling the speed and torque of the rotor.
Abstract:
A pressure regulated valve is provided for a mechanical returnless fuel system for an automotive vehicle that includes a fuel pump for supplying fuel from a fuel supply to an engine. The pressure regulating valve includes a conduit in fluid communication with the pump outlet. The valve includes a valve seat and a valve body having a frustoconical seal surface. A spring biases the valve body to close the valve body against the valve seat. During operation, increased fuel pressure from the pump opens the valve body to discharge excess fuel to the fuel supply.
Abstract:
A mechanical returnless fuel system comprises a fuel pump having an output for supplying fuel to fuel injectors of an automotive engine. The fuel system includes a pressure regulating valve that returns a portion of the pump output in excess of engine fuel usage to the fuel supply. The pressure regulating valve results in a fuel pressure that varies as a function of engine fuel demand. During operation, a controller determines a projected engine fuel demand, then determines an estimated fuel pressure based upon the projected engine fuel demand. The controller utilizes the estimated fuel pressure to provide a more accurate calculation of the opening time for the fuel injectors and thereby improve engine control.
Abstract:
A low deviation pressure relief valve for a fuel pump consisting of a housing having an elongated bore having a continuous wall, an axis, shoulders arranged on the wall so as to extend toward the axis. A ball in the housing has a diameter at least less than the diameter of the bore and a ball retainer located in the bore upstream from the shoulders forms a ball seat by pre-coining process. The ball is smaller than the retainer seat in diameter to ensure an edge seal with the ball. A spring coaxial with the axis located down stream from the ball retainer and supported on the shoulders, and the ball is located between the spring and the ball seat wherein low flow restriction is created and reduced pressure variation is created as fluid flows past the ball and less buckling in the spring is created by guide ribs.
Abstract:
A pump includes a pump casing and an impeller. The pump casing has an axis and comprises a cover having a face surface and a body positioned about the axis. A channel is defined in the face surface of the cover. An inlet opening extends through the cover and is coupled to the channel. The channel has a first section and a second section. The first section extends from the inlet opening and is continually sloped relative to the face surface of the cover. The first section has a length of about 40 to about 90 degrees, as measured circumferentially on the face surface of the cover about the axis. The first section includes an inlet ramp, a main ramp, and a secondary ramp, with the secondary ramp being positioned between the main ramp and the inlet ramp, and the inlet ramp being positioned adjacent the inlet opening. Each ramp has at least one depth and at least one slope.
Abstract:
A fuel delivery module for an automotive fuel delivery system includes a reservoir and a fuel pump. The fuel pump delivers fuel from the tank to the reservoir via a fuel tank inlet and reservoir outlet and from the reservoir to the engine via a reservoir inlet and engine outlet. The reservoir is formed with a plurality of contaminant traps for collecting contaminants contained in the fuel as the fuel is pumped through the reservoir such that the contaminants settle unto said contaminant traps thereby reducing the amount of contaminants entering the reservoir inlet.
Abstract:
A fuel pump has a motor with a shaft extending therefrom and an impeller fitted thereon for pumping fuel from a fuel tank to an internal combustion engine. A pumping chamber, which encases the impeller, is comprised of a cover channel and a bottom channel formed in a pump cover and a pump bottom, respectively. The impeller has a plurality of radially extending vanes on an outer circumference separated by partitions of shorter radial length. The partitions are comprised of substantially quarter-circle shaped arcuate portions extending from the outer circumference of the impeller to a diverging portion, preferably to a substantially flat top with rounded corners. Fluid active vane grooves thus formed circumferentially between the vanes and axially between the partitions which reduce fuel vortices angular acceleration within the pumping chamber thus increasing pump efficiency.