Abstract:
An array substrate for an in-plane switching mode liquid crystal display device includes a substrate, a gate line disposed along a first direction on the substrate, a data line disposed along a second direction and crossing the gate line to define a pixel region, a thin film transistor connected to the gate line and the data line, pixel electrodes disposed in the pixel region and connected to the thin film transistor, common electrodes disposed in the pixel region and alternating with the pixel electrodes, a semiconductor layer underlying the data line and including a portion having a width greater than a width of the data line, and a first blocking pattern comprising an opaque material and disposed under the semiconductor layer.
Abstract:
An in-plane switching mode LCD having a plurality of pixels arranged in a matrix includes a gate line formed on a lower substrate, a data line formed such that the data line intersect the gate line to define a pixel region, a TFT (Thin Film Transistor) formed at the intersection of the gate line and the data line, a pixel electrode connected to the TFT, a common electrode to generate a horizontal electric field with the pixel electrode, and a common line supplying common voltage to the common electrode, wherein the common line comprises a first common line formed parallel to the gate line in a lower portion of the pixel region, a second common line formed parallel to the date line in a side portion of the pixel region adjacent to the data line, and a third common line formed parallel to the gate line in a upper portion of the pixel region, and wherein the data line comprises a pair of sub-lines facing directly with each other in every two pixel regions.
Abstract:
An in-plane switching mode LCD having a plurality of pixels arranged in a matrix includes a gate line formed on a lower substrate, a data line formed such that the data line intersect the gate line to define a pixel region, a TFT (Thin Film Transistor) formed at the intersection of the gate line and the data line, a pixel electrode connected to the TFT, a common electrode to generate a horizontal electric field with the pixel electrode, and a common line supplying common voltage to the common electrode, wherein the common line comprises a first common line formed parallel to the gate line, a second common line formed parallel to the date line in a side portion of the pixel region adjacent to the data line, and a third common line formed parallel to the gate line and disposed between a first row and a second row of the matrix.
Abstract:
A semiconductor device includes a semiconductor substrate with an isolation layer formed in the semiconductor substrate to delimit active regions. Recess patterns for gates are defined in the active regions and the isolation layer. Gate patterns are formed in and over the recess patterns for gates, and a gate spacer is formed to cover the gate patterns. The recess patterns for gates have a first depth in the active regions and a second depth, which is greater than the first depth, in the isolation layer. Gaps are created between the gate patterns and upper parts of the recess patterns for gates that are defined in the isolation layer. The gate spacer fills the gaps and protects the gate spacer so as to prevent bridging.
Abstract:
A method for forming a contact in a semiconductor device, comprises providing a substrate, forming a plurality of conductive patterns and a passivation layer surrounding the conductive patterns over the substrate, forming an insulation layer covering the conductive patterns and passivation layer, forming a mask pattern for a contact over the insulation layer, forming a first opening by performing an isotropic etch process on the insulation layer using the mask pattern as an etch mask, wherein the isotropic etch process is performed until the insulation layer meets the passivation layer, forming a barrier layer over a resultant structure of the first opening, exposing the insulation layer by performing an anisotropic etch process using the mask pattern as an etch mask, and forming a second opening exposing the substrate by performing a self aligned contact (SAC) process using the mask pattern and barrier layer as an etch mask.
Abstract:
A liquid crystal display device includes a first substrate and a second substrate facing each other; a gate line and a data line crossing each other to define a pixel region on the first substrate; a thin film transistor on the first substrate and adjacent to the pixel region; a column spacer located on the second substrate; a protrusion located on the first substrate at a location corresponding to the protrusion, the protrusion having a hollow portion and a surrounding wall surrounding the hollow portion, the hollow portion being exposed at the top side of the protrusion; and a liquid crystal layer interposed between the first substrate and the second substrate.
Abstract:
A liquid crystal display device includes a display panel including a display area and a non-display area surrounding the display area, a plurality of gate lines and data lines arranged on the display area to intersect each other, so as to define a plurality of pixel regions, a plurality of thin-film transistors formed at respective intersections of the gate lines and the data lines, a plurality of pixel electrodes formed on the respective pixel regions and connected to the thin film transistors, and at least one first common line provided between the data lines and arranged parallel to the data lines.
Abstract:
According to an embodiment, a fabrication method includes forming a gate line disposed along a first direction and a common line parallel to the gate line on a substrate, the gate and common lines spaced apart from each other, forming a gate insulating layer on the gate and common lines, forming a semiconductor layer on the gate insulating layer, forming a source electrode and a pixel electrode of transparent conductive material, the pixel electrode including a drain electrode portion, the drain electrode portion overlapping the semiconductor layer, forming a passivation layer including a first contact hole and an open portion, the first contact hole exposing the source electrode and the open portion exposing the pixel electrode, respectively, and forming a data line disposed along a second direction on the passivation layer, the data line connected to the source electrode through the first contact hole and crossing the gate line.
Abstract:
A method for fabricating an isolation layer in a semiconductor device includes providing a substrate, forming a trench over the substrate, forming a liner nitride layer and a liner oxide layer along a surface of the trench, forming an insulation layer having an etch selectivity ratio different from that of the liner oxide layer over the liner oxide layer, forming a spin on dielectric (SOD) oxide layer to fill a portion of the trench over the insulation layer, and forming a high density plasma (HDP) oxide layer for filling the remaining a portion of the trench.
Abstract:
An optical detecting sensor includes a sensor thin film transistor generating an optical current in response to incident light reflected from an object; a storage capacitor storing charges of the optical current generated in the sensor thin film transistor; and a switch thin film transistor controlling release of the stored charges of the storage capacitor to an outer circuit for display of image of the object, having dual-layered source and drain electrodes of transparent conducting material and metal material, an active layer and a gate electrode. The switch thin film transistor further includes an ohmic contact layer on the active layer through which the dual-layered drain and source electrodes contact the active layer.