摘要:
An electrode, which includes a magnetic material to improve the flow of charges, and an organic light emitting device using the electrode. The electrode for the organic light emitting device has an excellent charge injection property, so that it is possible to improve the efficiency of light emission of the organic light emitting device.
摘要:
The present invention is to provide an organic light emitting display and a method of manufacturing the same, the light emitting display including: a first substrate on which a plurality of light emitting devices are formed; a second substrate disposed to face the first substrate; a dam member disposed between the first substrate and the second substrate to surround the plurality of light emitting devices; an inorganic sealing material disposed between the first substrate and the second substrate on an outward side of the dam member and attaching the first substrate and the second substrate; and a filling material provided between the first substrate and the second substrate on an inward side of the dam member and formed of at least one inert liquid selected from the group consisting of perfluorocarbon and fluorinert.
摘要:
The present invention is to provide an organic light emitting display and a method of manufacturing the same. The light emitting display according to the present invention includes: a first substrate on which a plurality of light emitting devices having first electrodes, organic light emitting layers, and second electrodes are disposed; a second substrate disposed to face the first substrate; a dam member disposed between the first substrate and the second substrate to surround the plurality of light emitting devices; an inorganic sealing material disposed between the first substrate and the second substrate in an outer area of the dam member and attaching the first substrate to the second substrate; and a silicon filling material provided between the first substrate and the second substrate inward of the dam member to be in contact with the second electrodes.
摘要:
An organic electroluminescent device includes a substrate, an encapsulation substrate, an organic electroluminescent portion interposed between the substrate and the encapsulation substrate and a transparent moisture absorption layer. The transparent moisture absorption layer comprises at least one of a metal oxide and a metal salt with an average particle diameter of about 100 nm or less, a binder, and a dispersant. The transparent moisture absorption layer may be disposed in an internal space provided by the substrate and the encapsulation substrate and may be used in a front emission type organic electroluminescent device.
摘要:
A method of manufacturing an organic light-emitting device, the method including: forming an anode; forming an intermediate layer comprising an emission layer on the anode; and forming a cathode on the intermediate layer, wherein the forming of the cathode comprises thermally depositing indium or indium oxide, with at least one of a metal or a metal oxide in plasma generated in a chamber to form a transparent conductive layer of indium oxide doped with the at least one of the metal or the metal oxide.
摘要:
An organic light emitting diode (OLED) including a first electrode formed on a substrate; an intermediate layer formed on the first electrode and including an organic emission layer; and a second electrode formed on the intermediate layer, wherein at least one from among the first electrode and the second electrode is formed as a transparent electrode including a material selected from the group consisting of MoOx, WOx, YbOx, ReOx, GeOx, and combinations thereof. In this manner, the performance of the transparent electrode is enhanced.
摘要:
A polysilsesquioxane copolymer, a polysilsesquioxane copolymer including the same, an organic light emitting diode display including the same, and associated methods, the polysilsesquioxane copolymer including a copolymer including repeating units derived from a first monomer selected from the group consisting of alkoxyphenyltrialkoxysilane, alkoxyphenylalkyltrialkoxysilane, alkoxycarbonylphenyltrialkoxysilane, and alkoxycarbonylphenylalkyltrialkoxysilane, and repeating units derived from a second monomer including an α,ω-bis(trialkoxysilyl) compound monomer.
摘要:
An organic light emitting device including an anode having a high light transmissivity and a controllable work function, and allowing for a high degree of freedom for selection of a cathode, and a method of manufacturing the same. The anode of the organic light emitting device includes a first layer. The first layer includes a first metal oxide, and a second metal oxide differing from the first metal oxide and doped into the first metal oxide. The cathode faces the anode, and an organic layer including an emission layer between the anode and the cathode.
摘要:
A wideband retardation layer (or film) that can perform circular polarizing so that the retardation layer can be formed with an organic light-emitting device to be relatively thin and have a relatively high contrast with no reduction in brightness, and an organic light-emitting device including the retardation layer. The retardation film includes a base and a retardation layer including an alkali oxide layer grown to be inclined on a surface of the base, wherein the alkali oxide layer is disposed by slant-angle depositing alkali oxide on the surface of the base.
摘要:
An organic light-emitting device including a first substrate with an array of organic light-emitting pixels formed thereon, and a second substrate is disclosed. A transparent moisture absorption layer is disposed between the first and second substrates. The transparent moisture absorption layer efficiently absorbs moisture and/or oxygen, and thus the lifetime characteristics of the organic light-emitting device are improved. The transparent moisture absorption layer has a transmittance of about 85% or higher with respect to visible light. The layer has a thickness of about 10 to about 60,000 nm and a refractive index of about 1.45 to about 1.65 in an inert and/air atmosphere. The layer is formed on the second substrate by using chemical vapor deposition or physical vapor deposition.