Abstract:
Liquid formulations, including solutions and suspensions of the various drugs, agents and/or compounds, may be locally or regionally delivered for the treatment of vascular disease. In each of these instances, antioxidants are utilized to prolong product integrity.
Abstract:
Coatings are provided in which surfaces may be activated by covalently bonding a combination ofsilane derivatives (A) to the metal surface, covalently bonding a lactone polymer (B) to the silane derivative by in situ ring opening polymerization, and depositing at least one layer of a polyester (C) on the bonded lactone polymer. Biologically active agents or therapeutic compounds may be deposited with any of the polyester layers. Such coated surfaces may be useful in medical devices, in particular stents.
Abstract:
Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. In addition, these therapeutic drugs, agents and/or compounds may be utilized to promote healing, including the formation of blood clots. Therapeutic agents may also be delivered to the region of a disease site. In regional delivery, liquid formulations may be desirable to increase the efficacy and deliverability of the particular drug. Also, the devices may be modified to promote endothelialization. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned. In addition, the devices utilized to deliver the implantable medical devices may be modified to reduce the potential for damaging the implantable medical device during deployment. Medical devices include stents, grafts, anastomotic devices, perivascular wraps, sutures and staples. In addition, various polymer combinations may be utilized to control the elution rates of the therapeutic drugs, agents and/or compounds from the implantable medical devices.
Abstract:
An expandable medical device includes a plurality of elongated struts, forming a substantially cylindrical device which is expandable from a first diameter to a second diameter. A plurality of different beneficial agents may be loaded into different openings within the struts for delivery to the tissue. For treatment of conditions such as restenosis, different agents are loaded into different openings in the device to address different biological processes involved in restenosis and are delivered at different release kinetics matched to the biological process treated. The different agents may also be used to address different diseases from the same drug delivery device. In addition, anti-thrombotic agents may be affixed to at least a portion of the surfaces of the medical device for the prevention of sub-acute thrombosis. To ensure that the different agents remain affixed to the device as well as to each other, primer layers may be utilized.
Abstract:
Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. In addition, these therapeutic drugs, agents and/or compounds may be utilized to promote healing, including the formation of blood clots. Therapeutic agents may also be delivered to the region of a disease site. In regional delivery, liquid formulations may be desirable to increase the efficacy and deliverability of the particular drug. Also, the devices may be modified to promote endothelialization. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned. In addition, the devices utilized to deliver the implantable medical devices may be modified to reduce the potential for damaging the implantable medical device during deployment. Medical devices include stents, grafts, anastomotic devices, perivascular wraps, sutures and staples. In addition, various polymer combinations may be utilized to control the elution rates of the therapeutic drugs, agents and/or compounds from the implantable medical devices.
Abstract:
Implantable medical devices may be utilized to locally delivery one or more drugs or therapeutic agents to treat a wide variety of conditions, including the treatment of the biological organism's reaction to the introduction of the implantable medical device. These therapeutic agents may be released under controlled and directional conditions so that the one or more therapeutic agents reach the correct target area, for example, the surrounding tissue and/or the bloodstream.
Abstract:
Medical devices, and in particular implantable structures, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. In addition, these therapeutic drugs, agents and/or compounds may be utilized to promote healing, including the formation of blood clots. Also, the devices may be modified to promote endothelialization.
Abstract:
The present invention discloses a radiographic contrasting agent containing multiple aromatic groups, each of which is substituted with at least three halogen atoms. The radiographic contrasting agent can initiate a polymerization process. The present invention also discloses a radio-opaque polymeric material that comprises a biodegradable polymer having at least one radiographic contrasting moiety covalently attached thereto. The radio-opaque polymeric material provides enhanced contrasting intensity in radiographic imaging. The radio-opaque polymeric material can be applied on at least a portion of one surface of a medical device. The radio-opaque polymeric material can also be used to construct a medical device, a component thereof, or a portion of a component thereof.
Abstract:
An expandable medical device includes a plurality of elongated struts, forming a substantially cylindrical device which is expandable from a first diameter to a second diameter. A plurality of different beneficial agents may be loaded into different openings within the struts for delivery to the tissue. For treatment of conditions such as restenosis, different agents are loaded into different openings in the device to address different biological processes involved in restenosis and are delivered at different release kinetics matched to the biological process treated. The different agents may also be used to address different diseases from the same drug delivery device. In addition, anti-thrombotic agents may be affixed to at least a portion of the surfaces of the medical device for the prevention of sub-acute thrombosis. To ensure that the different agents remain affixed to the device as well as to each other, primer layers may be utilized.
Abstract:
A biocompatible metallic material may be configured into any number of implantable medical devices, including intraluminal stents. The biocompatible metallic material may comprise a magnesium alloy. The magnesium alloy implantable medical device may be designed to degrade over a given period of time. In order to control the degradation time, the device may be coated or otherwise have affixed thereto one or more coatings, one of which comprises a material for controlling the degradation time and maintain a pH neutral environment proximate the device. Additionally, therapeutic agents may be incorporated into one or more of the coatings on the implantable medical device.