Abstract:
Magnetoresistive elements, and memory devices including the same, include a free layer having a changeable magnetization direction, a pinned layer facing the free layer and having a fixed magnetization direction, and an auxiliary element on a surface of the pinned layer. The auxiliary element has a width smaller than a width of the pinned layer, and a magnetization direction fixed to a direction the same as a direction of the fixed magnetization direction of the pinned layer.
Abstract:
Magnetic memory devices including a free magnetic layer having a three-dimensional structure, include a switching device and a magnetic tunnel junction (MTJ) cell connected thereto. The MTJ cell includes a lower magnetic layer, a tunnel barrier layer, and a free magnetic layer, which are sequentially stacked. A portion of the free magnetic layer protrudes in a direction away from an upper surface of the tunnel barrier layer.
Abstract:
Oscillators and methods of operating the same, the oscillators include a pinned layer having a fixed magnetization direction, a first free layer over the pinned layer, and a second free layer over the first free layer. The oscillators are configured to generate a signal using precession of a magnetic moment of at least one of the first and second free layers.
Abstract:
Oscillators and methods of manufacturing and operating the same are provided, the oscillators include a pinned layer, a free layer and a barrier layer having at least one filament between the pinned layer and the free layer. The pinned layer may have a fixed magnetization direction. The free layer corresponding to the pinned layer. The at least one filament in the barrier layer may be formed by applying a voltage between the pinned layer and the free layer. The oscillators may be operated by inducing precession of a magnetic moment of at least one region of the free layer that corresponds to the at least one filament, and detecting a resistance change of the oscillator due to the precession.
Abstract:
An oscillator and a method of operating the same are provided, the oscillator may include a free layer, a pinned layer on a first surface of the free layer, and a reference layer on a second surface of the free layer. The free layer may have a variable magnetization direction. The pinned layer may have a pinned magnetization direction. The reference layer may have a magnetization direction non-parallel to the magnetization direction of the pinned layer.
Abstract:
A magnetoresistive element is disclosed, wherein the magnetoresistive element is composed of a synthetic anti-ferromagnetic (SAF) structure that may include a first pinned layer, an intermediate layer, and a second pinned layer; and a Cr layer between the first pinned layer and the intermediate layer and/or the second pinned layer and the intermediate layer.
Abstract:
A magnetic memory device includes a lower structure or an antiferromagnetic layer, a pinned layer, an information storage layer, and a free layer formed on the lower structure or the antiferromagnetic layer. In a method of operating a magnetic memory device, information from the storage information layer is read or stored after setting the magnetization of the free layer in a first magnetization direction. The information is stored when the first magnetization direction is opposite to a magnetization direction of the pinned layer, but is read when the first magnetization direction is the same as the magnetization direction of the pinned layer.
Abstract:
Provided are a data storage device using magnetic domain wall movement and a method of operating the data storage device. The data storage device includes a first magnetic layer for writing data having two magnetic domains magnetized in opposite directions to each other and a second magnetic layer for storing data formed on at least one side of the first magnetic layer. The data storage device may further include a data recording device connected to both ends of the first magnetic layer and the end of the second magnetic layer which is not adjacent to the first magnetic layer, a read head formed a predetermined distance from the end of the second magnetic layer which is not adjacent to the first magnetic layer, and a current detector connected to the read head and the data recording device.
Abstract:
Example embodiments may provide a magnetic memory device. The example embodiment magnetic memory devices may include a plurality of memory tracks, bit lines, connectors, a first input portion, and/or selectors. The memory track(s) may be stacked on a substrate to form a multi-stack. A plurality of magnetic domains may be formed in the memory track so that a data bit may be represented by a magnetic domain and may be stored in an array. The bit line(s) may be formed along respective memory tracks. The connector(s) may form a magnetic tunnel junction (MTJ) cell with one data bit region of the memory track. The first input portion may be electrically connected to each memory track and may input a magnetic domain motion signal to move data stored on a data bit region of the memory track to an adjoining data bit region. The selector(s) may select a memory track from a plurality of memory tracks on which a reading and/or writing operation may to be performed.
Abstract:
The invention provides novel cephalosporin derivatives of the formula (I) ##STR1## and salts thereof for use in pharmaceutical compositions. Also novel precursors for synthesis of the cephalosporins are disclosed.