Abstract:
According to one embodiment, a memory system includes a shift register memory and a controller. The shift register memory includes data storing shift strings. The controller changes a shift pulse, which is to be applied to the data storing shift strings from which first data is read by applying a first shift pulse, to a second shift pulse to write second data to the data storing shift strings and to read the second data from the data storing shift strings. The controller creates likelihood information of data read from the data storing shift strings in accordance with a read result of the second data. The controller performs soft decision decoding for the first data using the likelihood information.
Abstract:
According to one embodiment, a magnetic memory device includes a first magnetic portion, a first magnetic layer, a first nonmagnetic layer, a second magnetic portion, a second magnetic layer, a second nonmagnetic layer, a first electrode, and a second electrode. The first magnetic portion includes a first magnetic part and a second magnetic part. The first nonmagnetic layer is provided between the first magnetic layer and the first magnetic part. The second magnetic portion includes a third magnetic part and a fourth magnetic part. The second nonmagnetic layer is provided between the second magnetic layer and the third magnetic part. The first electrode electrically is connected to the second magnetic part and the fourth magnetic part. The second electrode is electrically connected to the first magnetic part and the third magnetic part.
Abstract:
According to one embodiment, a magnetic memory device includes an element unit and a controller. The element unit includes a magnetic member, a first magnetic layer, a second magnetic layer, an intermediate layer, and a non-magnetic layer. The magnetic member includes a first region, a first portion, and a second portion. The first region is provided between the first portion and the second portion, or included in the first portion. The first magnetic layer is apart from the first region in a first direction. The second magnetic layer is provided between the first region and the first magnetic layer. The intermediate layer is provided between the first magnetic layer and the second magnetic layer. The intermediate layer is non-magnetic. The non-magnetic layer is connected with the first region. The controller is configured to supply a writing current and a shift current to the element unit.
Abstract:
A write apparatus and a magnetic memory, where the write apparatus includes a first drive port, a second drive port, a first information storage area, a second information storage area, and an information buffer. A first area locates between the first information storage area and the information buffer. A second area locates between the second information storage area and the information buffer. The first information storage area, the second information storage area, and the information buffer are made of a first magnetic material. The first area and the second area are made of a second magnetic material. Magnetic energy of the first magnetic material is higher than magnetic energy of the second magnetic material. The write apparatus can ensure write stability of the magnetic memory.
Abstract:
According to one embodiment, a magnetic memory device includes a first magnetic body and a second magnetic body. The first magnetic body extends in a first direction. The second magnetic body extends in the first direction. A distance between the second magnetic body and the first magnetic body changes periodically along the first direction.
Abstract:
A magnetic element capable of generating and erasing a skyrmion, including a magnet shaped as a thin layer and including a structure surrounded by a nonmagnetic material; a current path provided surrounding an end region including an end portion of the magnet, on one surface of the magnet; and a skyrmion sensor that detects the generation and erasing of the skyrmion. With Wm being width of the magnet and hm being height of the magnet, a size of the magnet, with the skyrmion of a diameter λ being generated, is such that 2λ>Wm>λ/2 and 2λ>hm>λ/2. With W being width of the end region in a direction parallel to the end portion of the magnet and h being height of the end region in a direction perpendicular to the end portion of the magnet, the end region is such that λ≧W>λ/4 and 2λ>h>λ/2.
Abstract:
A magnetic storage apparatus is disclosed, and is configured to access data. The magnetic storage apparatus includes a magnetic storage track, a first write apparatus, a second write apparatus, and a drive apparatus. The first write apparatus and the second write apparatus are located at different positions on the magnetic storage track. The first write apparatus is configured to write first data “0” or second data “1”. The second write apparatus is configured to write third data “2” and fourth data “3”.
Abstract:
A magnetic memory device according to an embodiment includes a first magnetic section, a read section, and a write section. The first magnetic section includes an extending portion. The extending portion extends in a first direction. The extending portion has a first interface and a second interface. The extending portion includes magnetic domains arranged along the first direction. Magnetization easy axis of the extending portion is directed along a second direction. The extending portion includes a first region and a second region. The first region contains at least one first element selected from a first group consisting of gadolinium, terbium, dysprosium, neodymium, and holmium. The second region contains at least one second element selected from a second group consisting of iron, cobalt, nickel, boron, silicon, and phosphorus. Concentration of the first element in the second region is lower than concentration of the first element in the first region.
Abstract:
An information storage apparatus includes a magnetic track, a writer, and a reader, where the magnetic track includes a number of magnetic domains. Each magnetic domain is divided into at least two magnetic regions, and the writer is disposed on the magnetic track, and configured to write information to the at least two magnetic regions of each magnetic domain. The reader, disposed on the magnetic track, is configured to read the written information from the at least two magnetic regions. Therefore, multiple pieces of valid information are written to one magnetic domain of the magnetic track, thereby increasing storage density of the magnetic track, and expanding a storage capacity of the storage apparatus.
Abstract:
A magnetoresistive effect element of the present invention includes: a domain wall motion layer, a spacer layer and a reference layer. The domain wall motion layer is made of ferromagnetic material with perpendicular magnetic anisotropy. The spacer layer is formed on the domain wall motion layer and made of non-magnetic material. The reference layer is formed on the spacer layer and made of ferromagnetic material, magnetization of the reference layer being fixed. The domain wall motion layer includes at least one domain wall, and stores data corresponding to a position of the domain wall. An anisotropy magnetic field of the domain wall motion layer is larger than a value in which the domain wall motion layer can hold the perpendicular magnetic anisotropy, and smaller than an essential value of an anisotropy magnetic field of the ferromagnetic material of the domain wall motion layer.