Abstract:
In a vertically aligned mode LCD, a gate line and a storage line are formed on a substrate in parallel, and a storage electrode and a cover pattern are formed as branches of the storage line. The storage electrode is overlapped with an aperture of a common electrode formed on an upper substrate. The cover pattern is located between a pixel electrode and a data line to prevent a light leakage. Accordingly, an alignment error margin of the upper substrate and the lower substrate is increased, an aperture ratio is enhanced, and repairing the high pixel defect is possible. Further, the light leakage caused by a voltage of the data line is prevented.
Abstract:
Apertures are formed in the common electrode or in the pixel electrode of a liquid crystal display to form a fringe field. Storage capacitor electrodes are formed at the position corresponding to the apertures to prevent the light leakage due to the disclination caused by the fringe field. The apertures extend horizontally vertically or obliquely. The apertures in adjacent pixel regions may have different directions to widen the viewing angle.
Abstract:
Liquid crystal material is interposed between an upper panel and a lower panel. The lower panel includes signal transmitting wires including a gate wire and a data wire, thin film transistors connected to the signal transmitting wires and pixel electrodes connected to the thin film transistors, and the upper panel includes color filters, a black matrix and a common electrode. The pixel electrodes and the common electrode have apertures partitioning the pixel electrode into several domains. In addition, the director of liquid crystal molecules contained in the liquid crystal material is aligned perpendicular to the upper panel and the lower panel in absence of electric field between the pixel electrodes and the common electrode. The dielectric anisotropy of the liquid crystal material has a value ranging −4.0 to −5.5.
Abstract:
A tetragonal ring shape aperture is formed in the common electrode on one substrate and a cross shape aperture is formed at the position corresponding to the center of the tetragonal ring shape aperture in the pixel electrode on the other substrate. A liquid crystal layer between two electrodes are divided to four domains where the directors of the liquid crystal layer have different angles when a voltage is applied to the electrodes. The directors in adjacent domains make a right angle. The tetragonal ring shape aperture is broken at midpoint of each side of the tetragon, and the width of the aperture decreases as goes from the bent point to the edge. Wide viewing angle is obtained by four domains where the directors of the liquid crystal layer indicate different directions, disclination is removed and luminance increases.
Abstract:
Liquid crystal material is interposed between an upper panel and a lower panel. The lower panel includes signal transmitting wires including a gate wire and a data wire, thin film transistors connected to the signal transmitting wires and pixel electrodes connected to the thin film transistors, and the upper panel includes color filters, a black matrix and a common electrode. The pixel electrodes and the common electrode have apertures partitioning the pixel electrode into several domains. In addition, the director of liquid crystal molecules contained in the liquid crystal material is aligned perpendicular to the upper panel and the lower panel in absence of electric field between the pixel electrodes and the common electrode. The dielectric anisotropy of the liquid crystal material has a value ranging −4.0 to −5.5.
Abstract:
An in-plane switching type liquid crystal display device includes opposed first and second panels, defining a gap therebetween, the first and second panels including first and second electrodes, spaced laterally apart in the gap. A quantity of a liquid crystal material is disposed in the gap between the first and second panels, wherein a product of a refractive anisotropy of the liquid crystal material and the gap between the first and second panels is in a range between 0.36 &mgr;m and 0.45 &mgr;m. Preferably, the gap between the first and second panels is in a range between 4 &mgr;m and 5 &mgr;m, and the refractive anisotropy is in a range between 0.067 and 1.1016. Each of panels preferably has an alignment surface which is operative to align molecules of the liquid crystal material along an alignment direction, and a polarizer, attached to one of the first and second panels, selectively permits light having a polarization of 45° with respect to the alignment direction to pass through the quantity of liquid crystal material. Related fabrication methods are also described.
Abstract:
Liquid crystal display devices include a vertically aligned liquid crystal cell having first and second surfaces that extend opposite each other and contain a liquid crystal material therein having negative dielectric anisotropy. First and second polarizers are attached to the first and second surfaces of the liquid crystal cell, respectively. A first a-plate compensation film and a first c-plate compensation film are provided. These films are disposed between the first surface of the liquid crystal cell and the first polarizer. The direction having a largest refractive index in the first a-plate compensation film is parallel to or perpendicular to a polarizing direction of the first polarizer. Moreover, a difference between a summation of a retardation (nxa1−nza1)×da1 of the first a-plate compensation film, a retardation (nxc1−nzc1)×dc1 of the first c-plate compensation film and a retardation of the first and the second polarizers and a retardation due to birefringence of the liquid crystal cell is equal to or less than 15% of the retardation value due to birefringence of the liquid crystal cell.
Abstract:
A tetragonal ring shape aperture is formed in the common electrode on one substrate and a cross shape aperture is formed at the position corresponding to the center of the tetragonal ring shape aperture in the pixel electrode on the other substrate. A liquid crystal layer between two electrodes are divided to four domains where the directors of the liquid crystal layer have different angles when a voltage is applied to the electrodes. The directors in adjacent domains make a right angle. The tetragonal ring shape aperture is broken at midpoint of each side of the tetragon, and the width of the aperture decreases as goes from the bent point to the edge. Wide viewing angle is obtained by four domains where the directors of the liquid crystal layer indicate different directions, disclination is removed and luminance increases.
Abstract:
Two electrodes in parallel with each other are formed on one of two substrates, homeotropic alignment films are formed on the substrates and a liquid crystal material having positive dielectric anisotropy is injected between the substrates. When the voltage is applied to the two electrodes, a parabolic electric field between the electrodes drives the liquid crystal molecules. Since the electric field generated is symmetrical with respect to the boundary-plane equal distance from each of the two electrodes, the liquid crystal molecules are symmetrically aligned with respect to the boundary-plane. The electric field does not exert influences the liquid crystal molecules on the boundary-plane since the electric field on the boundary-plane is parallel with the substrates and perpendicular to the two electrodes; and thus, it is perpendicular to the liquid crystal molecules. Here, the polarization of the light is changed while passing through the liquid crystal layer and as a result, only a part of the light passes through the polarizing plate. The transmittance of the light can be varied by controlling the magnitude of voltage applied to the two electrodes.
Abstract:
A liquid crystal display comprises: first and second panels facing each other; a compensation film and a first polarizer disposed on the first panel, the compensation film having phase retardation characteristics; and a second polarizer having a supporting film disposed on the second panel, the supporting film having phase retardation characteristics. In alternative embodiments, a supporting film is used in place of the compensation film. The supporting film has retardation characteristics.