摘要:
Crosslinking systems suitable for use in a polymer melt composition wherein the polymer melt composition comprises a hydroxyl polymer; polymeric structures made from such polymer melt compositions; and processes/methods related thereto are provided.
摘要:
Crosslinking systems suitable for use in a polymer melt composition wherein the polymer melt composition comprises a hydroxyl polymer; polymeric structures made from such polymer melt compositions; and processes/methods related thereto are provided.
摘要:
Polymer structures and methods for making such polymer structures are provided. More particularly, polymer structures comprising a hydroxyl polymer structure, such as a fiber comprising a hydroxyl polymer are provided. Even more particularly, fibrous structures comprising a hydroxyl polymer structure, such as a fiber comprising a hydroxyl polymer, wherein the fibrous structure exhibits a CETM Factor of less than 20 and/or a CETM*L2 Factor of less than 950 are provided.
摘要:
Polysaccharides, more particularly, polysaccharide structures, especially fibers, comprising an unsubstituted polysaccharide, webs comprising such polysaccharide structures and processes for making such polysaccharide structures and/or webs are provided.
摘要:
The present invention relates to starch compositions which contain starch and additives. The starch has a weight average molecular weight ranging from about 1,000 to about 2,000,000. The additives can be plasticizers or diluents. The composition containing the starch and the additive is formed by means of passing the composition through a die to produce fibers, foams or films. These compositions have an extensional viscosity in the range from about 50 to about 20,000 pascal seconds. The starch compositions preferably contain a polymer that is substantially compatible with starch and has a weight-average molecular weight of at least 500,000.
摘要:
The present invention is directed to highly attenuated fibers produced by melt spinning a composition comprising destructurized starch, a thermoplastic polymer, and a plasticizer. The present invention is also directed to highly attenuated fibers containing microfibrils which are formed within the starch matrix. Nonwoven webs and disposable articles comprising the highly attenuated fibers are also disclosed.
摘要:
A process for making non-thermoplastic starch fibers comprises the steps of: (a) providing a non-thermoplastic starch composition comprising from about 50% to about 75% by weight of modified starch and from about 25% to about 50% of water and having a shear viscosity within the at least one nozzle from about 1 to about 80 Pascals-second at the processing temperature and at a shear rate of 3,000 sec−1; (b) extruding the non-thermoplastic starch composition through at least one extrusion nozzle terminating with a nozzle tip, thereby forming at least one embryonic starch fiber; (c) attenuating the at least one embryonic starch fiber with an attenuating air having an average velocity at the nozzle tip greater than about 30 meters per second, to cause the fiber to form an average equivalent diameter of less than about 20 microns; (d) dewatering the at least one embryonic starch fiber to a consistency of from about 70% to about 99% by weight, thereby producing at least one non-thermoplastic starch fiber, wherein the starch fiber as a whole has no melting point.
摘要:
Non-thermoplastic starch fibers having no melting point and having apparent peak wet tensile stress greater than about 0.2 MegaPascals (MPa). The fibers can be manufactured from a composition comprising a modified starch and a cross-linking agent. The composition can have a shear viscosity from about 1 Pascal·Seconds to about 80 Pascal·Seconds and an apparent extensional viscosity in the range of from about 150 Pascal·Seconds to about 13,000 Pascal·Seconds. The composition can comprise from about 50% to about 75% by weight of a modified starch; from about 0.1% to about 10% by weight of an aldehyde cross-linking agent; and from about 25% to about 50% by weight of water. Prior to cross-linking, the modified starch can have a weight average molecular weight greater than about 100,000 g/mol.