Abstract:
A bicycle assembly can include a main frame having a bottom bracket area to receive a bottom bracket. The bottom bracket area can be made of carbon fiber with one or more embedded seat blanks to serve as bearing surfaces within the bottom bracket area. The disks may be machined to a high tolerance to receive a bottom bracket.
Abstract:
A bicycle shock absorber and methods for differentiating between rider-induced forces and terrain-induced forces includes a first fluid chamber having fluid contained therein, a piston for compressing the fluid within the fluid chamber, a second fluid chamber coupled to the first fluid chamber by a fluid communication hose, and an inertial valve disposed within the second fluid chamber. The inertial valve opens in response to terrain-induced forces and provides communication of fluid compressed by the piston from the first fluid chamber to the second fluid chamber. The inertial valve does not open in response to rider-induced forces.
Abstract:
A liquid-dispensing container includes a housing and a poppet mounted to the housing and movable along an axis between an open position and a closed position. The poppet includes a base portion comprising a relatively rigid material and an elastomeric portion comprising an elastomeric material having a tensile elastic modulus less than the elastic modulus of the rigid material. The elastomeric portion can include an outer section engaged with an outer surface of the base portion and an inner section integrally formed with the outer section and forming a self-closing valve. In one construction, the self-closing valve includes a cylindrical section having a tapered wall thickness. Preferably, the outer section includes a circumferential seal (e.g., a groove) and a circumferential clearance adjacent the circumferential seal. The outer section can further include a retention cleat having a retention surface at an acute angle relative to the axis.
Abstract:
A method of making a portion of a bicycle frame including positioning a low-friction mandrel adjacent a flexible mandrel with a first fibrous material in between. The mandrels are wrapped with second fibrous material, and the mandrels are inserted into a mold. The second fibrous material is cured to produce a cured assembly, the cured assembly is withdrawn from the mold, and the low-friction mandrel is removed from the cured assembly to produce an internal passageway. The flexible mandrel can includes a recess, and the step of positioning can include inserting the low-friction mandrel into the recess of the flexible mandrel. Preferably, the low-friction mandrel has a cross sectional shape that substantially matches a cross-sectional shape of the recess. The invention is also embodied in a portion of a bicycle frame, such as a portion of the frame during the manufacturing process, and having similar features as recited above.
Abstract:
The present invention provides a bicycle comprising front and rear wheels and a frame including a main frame having a head tube and a top tube secured to the head tube at an intersection spaced from an upper end of the head tube. The intersection has a first lateral width, and the head tube above the intersection includes a tapered portion that tapers to a second lateral width narrower than the first lateral width. For example, the first lateral width can be at least three percent wider than the second lateral width. In one embodiment, the head tube above the tapered portion includes a flared portion that flares to a third lateral width wider (e.g., at least ten percent wider) than the second lateral width. In addition, the tapered portion can include a length that is larger (e.g., at least one hundred percent larger) than the second lateral width.
Abstract:
The present invention provides a bicycle comprising front and rear wheels, a frame supported on the front and rear wheels and including a front fork. The front fork comprises a steerer tube defining a steering axis, a fork blade coupled to and extending downward relative to the steerer tube, and a fork tip coupled between the fork blade and the front wheel. The fork tip includes a first arm extending at an angle of 40-85 degrees relative to the steering axis, a second arm extending at an angle of 70-120 degrees relative to the steering axis, and an axle support coupled between the second arm and the front wheel. In one embodiment, the first arm and second arm define a gap, and the fork tip further includes a resilient member positioned in the gap.
Abstract:
A bicycle damping system is arranged to reduce vibrations that originate at the bicycle wheel and are transmitted to the rider of the bicycle. Desirably, a front fork assembly is configured to be supported by a bicycle frame and includes a pair of fork legs, which extend in a downward direction along opposing sides of a front wheel of the bicycle. Preferably, the fork legs are configured to support the front wheel at their lower ends. Each of the fork legs can define a cavity and a damping member is positioned within the cavity. The damping member can be forced into contact with a surface of the fork leg. Seat stays, chain stays, the seat post and other components of the bicycle can also include a damping system.
Abstract:
A bicycle including a main frame, a front wheel mounted for rotation relative to the main frame. a rear dropout, and a rear wheel mounted for rotation relative to the rear dropout about an axis. The rear wheel defines a center plane of the bicycle and is driven by a chain. The bicycle also includes a seat stay coupling the rear dropout to the main frame. The seat stay has an inner surface facing the rear wheel and an outer surface facing away from the rear wheel. The seat stay includes a steep portion having an outer surface disposed at a steep angle of between about 25 degrees and about 75 degrees relative to the center plane, and at least a portion of the steep portion is disposed outboard of the chain.
Abstract:
A bicycle shock absorber and methods for differentiating between rider-induced forces and terrain-induced forces includes a first fluid chamber having fluid contained therein, a piston for compressing the fluid within the fluid chamber, a second fluid chamber coupled to the first fluid chamber by a fluid communication hose, and an inertial valve disposed within the second fluid chamber. The inertial valve opens in response to terrain-induced forces and provides communication of fluid compressed by the piston from the first fluid chamber to the second fluid chamber. The inertial valve does not open in response to rider-induced forces.
Abstract:
A shoe includes an outsole, a first upper portion, a second upper portion, a rotary dial mounted to the first upper portion, and first and second lace portions coupled between the rotary dial and the second upper portion. The first lace portion aligns with a heel region of the shoe, the second lace portion aligns with a pedal region of the outsole, and a closure center line aligns with a medial arch region of the outsole. The second upper portion includes first and second lace guides. The first upper portion includes a third lace guide between the first and second lace portions. The first and second lace portions define a unitary lace extending from the rotary dial, through the first, second, and third lace guides, and back to the rotary dial. No portion of the lace member crosses over another portion of the lace member outside of the rotary dial.