Abstract:
A system is described that has a first engine configured to determine an assignment of a resource to a task. The assignment is based on a schedule representation comprising at least resource profile data and task profile data. The resource profile data represents a resource profile associated with the resource and the task profile data represents a task profile associated with the task. The system also has a data store configured to store a set of rules, the set of rules comprising data indicative of one or more functions to be applied to one or more input data sources to output at least one variable value for the schedule representation. This then allows a second engine coupled to the data store to be configured to update the schedule representation in accordance with the set of rules.
Abstract:
A method of measuring an angle includes orienting a measurement device at a reference position characterized by a reference angle. A first panoramic image defined by a predetermined range of elevation angles is acquired where the first panoramic image includes an object. A first bearing of the object in relation to the reference angle is determined and the measurement device is rotated to a measurement position characterized by a measurement angle. A second panoramic image defined by the predetermined range of elevation angles is acquired where the second panoramic image includes the object. A second bearing of the object in relation to the reference angle is determined. The measurement angle is computed as a function of the first bearing and the second bearing.
Abstract:
In a method for requesting network-derived position data from a mobile geographic position aware receiver, a mobile geographic position aware receiver having a first IP address is communicatively coupled with a first port on a router. A wireless transceiver is communicatively coupled with a second port on the router. A wireless communication device is communicatively coupled with a third port on the router. A processor is communicatively coupled with the router; the processor for executing a communications access command sequence. The command sequence comprises: testing for a wireless network connectivity; contacting a source of position data if wireless network connectivity exists; and generating a data message to be sent via the wireless transceiver if the wireless network connectivity does not exist, the data message comprising an Internet Protocol (IP) address of the router, an approximate current location of the mobile geographic position aware receiver, and a request for correction data.
Abstract:
Embodiments of the present invention are directed to a method for performing non-contact based determination of the position of an implement. In one embodiment, the method includes using a non-contact based measurement system to determine a first measurement comprising the position of the implement relative to a mobile machine coupled with the implement, determining a second measurement comprising the geographic position of the mobile machine and determining the geographic position of the implement using the first measurement and the second measurement.
Abstract:
A method for displaying arrays of digital image data on a display monitor as a continuous image includes determining nonlinear corrections for each of the arrays of digital image data. Each nonlinear correction may be based in part on a location of the imaging device used to capture the array of digital image data relative to a location of the perspective center from which the array of digital image data will be displayed on the display monitor. The method also includes transforming each array of digital image data using the corresponding nonlinear correction. The method also includes displaying the arrays of corrected image data on the display monitor to produce a continuous display of the scene captured by the imaging device, where relative sizes and positions of objects in the scene are substantially reproduced in the display of the scene.
Abstract:
A method is provided for estimating parameters useful to determine the position of a global navigation satellite system (GNSS) receiver or a change in the position thereof. The method includes the steps of: obtaining at least one GNSS signal received at the GNSS receiver from each of a plurality of GNSS satellites; obtaining, from at least one network node, precise satellite information on: (i) the orbit or position of at least one of the plurality of GNSS satellites, and (ii) a clock offset of at least one of the plurality of GNSS satellites; identifying, among the obtained GNSS signals, a subset of at least one GNSS signal possibly affected by a cycle slip, the identified subset being hereinafter referred to as cycle-slip affected subset; and estimating parameters useful to determine the position of the GNSS receiver or a change in the position of the GNSS receiver using at least some of the obtained GNSS signals which are not in the cycle-slip affected subset, and the precise satellite information.
Abstract:
Automatic change propagation in an area-based open pit mine designer is disclosed. One example includes an economic shell receiver module to receive an economic shell. In addition a user input module receives a user parametric input denoting an open pit mine shape based on the economic shell. An open pit mine designer module automatically develops an open pit mine design from the user parametric input. The user input module receives an additional area to be incorporated into the open pit mine design. The open pit mine designer module automatically propagates the additional area into the open pit mine design to generate a modified open pit mine design.
Abstract:
A method for matching a region on an object of interest with a geolocation in a coordinate system is disclosed. In one embodiment, an image of a region on an object of interest is captured on an image capture device. The image is processed to detect a located feature using a feature detection algorithm. Further processing of the located feature is performed to derive a first feature descriptor using a feature descriptor extraction algorithm. The feature descriptor is stored in a memory. A database of feature descriptors having geolocation information associated with the feature descriptors is searched for a match to the first feature descriptor. The geolocation information is then made available for access.
Abstract:
A computer-implemented method of providing georeferenced information regarding a location of capture of an image is provided. The method includes receiving a first image at an image-based georeferencing system, the first image comprising digital image information and identifying a cataloged second image that correlates to the first image. The method further includes automatically determining reference features common to both the second image and the first image, accessing geographic location information related to the common reference features, utilizing the geographic location information related to the common features to determine a georeferenced location of capture of the first image and providing the georeferenced location of capture for access by a user of the image-based georeferencing system.