Abstract:
An intraocular lens system is presented that comprises an electro-active lens comprising multiple independently controllable zones or pixels, and a controller capable of being remotely programmed.
Abstract:
Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to, via a device comprising an electro-active lens, automatically acquiring at least two images of a scene.
Abstract:
A spectacle lens is disclosed. The disclosed lens provides a vision correcting area for the correction of a wearer's refractive error. The viewing correction area provides correction for non-conventional refractive error to provide at least a part of the wearer's vision correction. The lens has a prescription based on a wave front analysis of the wearer's eye and the lens can further be modified to fit within an eyeglass frame.
Abstract:
A lens including a flexible refractive optic having a fixed refractive index, an electro-active element embedded within the flexible refractive optic, wherein the electro-active element has an alterable refractive index, and a controller electrically connected to the electro-active element wherein when power is applied thereto the refractive index of the electro-active element is altered.
Abstract:
Eyewear is provided including a frame, and a camera connected with the frame, in which the camera is configured to be controlled by a remote controller. The camera may be configured to capture video and/or a photo. The eyewear may include data storage, and the camera may be connected to the data storage. A wristwatch may be configured to act both as a time piece and a controller of the camera. The eyewear may also include a heads up display and/or a video file player. The eyewear may also include an electro-active lens.
Abstract:
An eyewear system including an eyewear frame and an application module. The eyewear frame including a docking station, and an electronic connector including a first set of preconfigured application connection points. The application module adapted to be mounted to the docking station, and including an electronic device configured to perform a function, and a second set of preconfigured application connection points corresponding to at least some of the first set of preconfigured application connection points. The second set of preconfigured application connection points including at least two different sub-function connections used to support the function of the electronic device.
Abstract:
A beam steering device includes a substrate with a first refractive index that defines a cavity, an electroactive material in the cavity that has a variable refractive index, and two sets of opposing overlays. The overlays in one set of opposing overlays are parallel to each other, while the overlays in the other set are tilted with respect to each other. This allows one or more electric fields between the overlays to be used to align the electroactive material in two different directions to change its refractive index, allowing for a faster speed of beam steering through refraction than conventional approaches.
Abstract:
Eyewear is provided including a frame, and a camera connected with the frame, in which the camera is configured to be controlled by a remote controller. The camera may be configured to capture video and/or a photo. The eyewear may include data storage, and the camera may be connected to the data storage. A wrist watch may be configured to act both as a time piece and a controller of the camera. The eyewear may also include a heads up display and/or a video file player. The eyewear may also include an electro-active lens.
Abstract:
Bright ambient light can wash out a virtual image in a conventional augmented reality device. Fortunately, this problem can be prevented with a variable electro-active beam splitter whose reflect/transmit ratio can be varied or switched on and off rapidly at a duty cycle based on the ambient level. As the ambient light gets brighter, the beam splitter's transmit/reflect ratio can be shifted so that the beam splitter reflects more light from the display and transmits less ambient light to the user's eye. The beam splitter can also be switched between a highly reflective state and a highly transmissive state at a duty cycle selected so that the eye spends more time integrating reflected display light than integrating transmitted ambient light. The splitting ratio and/or duty cycle can be adjusted as the ambient light level changes to provide the optimum experience for the user.
Abstract:
An eyewear system including an eyewear frame and an application module. The eyewear frame including a docking station, and an electronic connector including a first set of preconfigured application connection points. The application module adapted to be mounted to the docking station, and including an electronic device configured to perform a function, and a second set of preconfigured application connection points corresponding to at least some of the first set of preconfigured application connection points. The second set of preconfigured application connection points including at least two different sub-function connections used to support the function of the electronic device.