Abstract:
This disclosure relates to application dependent channel condition assessment mode selection for reduced power consumption in cellular communications. In one embodiment, a channel condition assessment mode may be selected for assessing a wireless communication channel used for a cellular link. The channel condition assessment mode may be selected from at least two channel condition assessment modes, and may be selected at least in part based on application characteristics of an application using the cellular link. Channel condition assessment may be performed according to the selected channel condition assessment mode. Channel condition assessment results obtained from the channel condition assessment may be transmitted to a cellular base station via the cellular link.
Abstract:
Apparatus and methods are disclosed for performing delayed hybrid automatic repeat request (HARQ) communications in the downlink (DL) to reduce power consumption for a user equipment (UE) during a connected mode discontinuous reception (C-DRX) cycle. An enhanced NodeB can be configured to monitor a physical uplink control channel (PUCCH) for DL HARQ information to determine when the PUCCH contains a negative acknowledgement (NACK) message, and in response to determining that the PUCCH contains a NACK message, the eNodeB can wait until a next C-DRX ON duration to transmit a HARQ DL retransmission. The eNodeB can also determine whether or not to bundle the HARQ DL retransmission in consecutive transmission time intervals, based on a signal to interference plus noise ratio (SINR) associated with the UE.
Abstract:
A method for improving reception by a wireless communication device is provided. The method can include a wireless communication device using a first RF chain to support a connection to a network via a first frequency band. The method can further include the wireless communication device tuning a second RF chain, which is not being actively used for carrier aggregation, to a second frequency band. The method can additionally include the wireless communication device measuring, via the second RF chain, a signal characteristic of the second frequency band. The method can also include the wireless communication device adjusting a configuration of the first RF chain based at least in part on the measured signal characteristic.
Abstract:
Apparatus and methods are disclosed for performing delayed hybrid automatic repeat request (HARQ) communications in the downlink (DL) to reduce power consumption for a user equipment (UE) during a connected mode discontinuous reception (C-DRX) cycle. An enhanced NodeB can be configured to monitor a physical uplink control channel (PUCCH) for DL HARQ information to determine when the PUCCH contains a negative acknowledgement (NACK) message, and in response to determining that the PUCCH contains a NACK message, the eNodeB can wait until a next C-DRX ON duration to transmit a HARQ DL retransmission. The eNodeB can also determine whether or not to bundle the HARQ DL retransmission in consecutive transmission time intervals, based on a signal to interference plus noise ratio (SINR) associated with the UE.
Abstract:
This disclosure relates to optimizing power consumption for cellular communication based on transport block size in combination with channel condition measurements via power amplifier biasing. According to one embodiment, an indication of a transport block size to be used for uplink communication with a base station may be received. It may be determined that the transport block size provides more robust communication characteristics than required for current channel conditions. A power amplifier (PA) bias current for uplink communication with the cellular base station may be selected based at least in part on determining that the transport block size provides more robust communication characteristics than required for the current channel conditions. In particular, PA bias current selection may be biased to reduce power consumption at a cost of greater non-linearity based on the transport block size providing more robust communication characteristics than required for the current channel conditions.
Abstract:
This disclosure relates to reducing power consumption for cellular communication based on transport block size in combination with channel condition measurements for applications with certain application characteristics. In one embodiment, a transport block size for use for uplink communication with a base station by a wireless device may be selected. The transport block size may provide more robust communication characteristics than required for current channel conditions. The transport block size may be selected based on application characteristics of an application performing the uplink communication. A transmit power for the wireless device to use for the uplink communication may be selected based on the transport block size providing more robust communication characteristics than required for the current channel conditions. In particular, transport power selection may be biased towards a reduced transmit power based on the transport block size providing more robust communication characteristics than required for the current channel conditions.
Abstract:
A method for redundant transmission of real time data is provided. The method can include an edge node in a wireless network sending a first RTP packet including a first real time data frame to a second edge node. The method can further include the edge node determining that a radio link condition is sufficient to support redundant transmission of real time data to the second edge node. The method can additionally include the edge node, in response to determining that the radio link condition is sufficient to support redundant transmission of real time data, bundling the first real time data frame with a next sequential real time data frame that has not been previously sent to the second edge node in a second RTP packet at a PDCP layer of the edge node; and sending the second RTP packet to the second edge node.
Abstract:
Smart gesturing may facilitate smart shopping and other contactless experiences by enabling a user to perform a natural gesture toward one or more desired items with or while wearing a wearable or non-wearable electronic device. The electronic device may identify the smart gesture, and determine the one or more desired items are indicated by the smart gesture. The electronic device may identify the desired items by receiving location data of multiple items, determining a vector based on a first position a second position of the smart gesture, extending the vector to a location, and using the location data to determine which item or items correspond to the location. If more than one item is indicated by the smart gesture, the electronic device may enable selection of the items and, if at least one item is selected, provide information on the selected items or enable additional interaction with the selected items.
Abstract:
A network device or component such as an access node (AN) can operate to provide a request to obtain a network slice of a network slice as a service (NSaaS) to provide a communication service on the network slice for an end-user device. In response to obtaining the network slice, a network slice customer (NSC) Service identity (ID) associated with the network slice can be determined and provided for a communication service for an application by the end-user device or user equipment (UE). The request can be processed at a network slice provider (NSP) component, in which the network slice can be assigned to the NSC in response to the request by the NSC. The NSP further provides a user equipment (UE) route selection policy (URSP) comprising a traffic descriptor that includes the NSC Service ID to the NSC.
Abstract:
An interface circuit in a device, e.g., an access point, may perform link adaptation. During operation, the interface circuit may provide a wake-up frame, e.g., a LP-WUR packet, associated with a channel in a band of frequencies, where the wake-up frame is intended for a wake-up radio in a recipient device. Then, the interface circuit may receive, from the recipient device, feedback information associated with a second channel in a second band of frequencies, where the feedback information is associated with a main radio in the recipient device. Based at least in part on the feedback information, the interface circuit may estimate one or more communication metrics associated with the channel in the band of frequencies. Moreover, based at least in part on the one or more communication metrics, the interface circuit may determine a data rate for use in communication via the channel in the band of frequencies.