摘要:
The application of a watershed algorithm to pixels and their touch values obtained from a scan of a touch sensor panel to determine patches corresponding to images of touch is disclosed. Prior to applying the watershed algorithm, background pixels having little or no touch values can be eliminated. A primary merge algorithm can then merge adjacent patches together when the saddle point between them is shallow as compared to the peak represented by the patches. However, if two candidate patches for merging have a total number of pixels below a certain threshold, these two patches may not be merged under the assumption that the patches might have been caused by different fingertips. Conversely, if two candidate patches for merging have a total number of pixels above a certain threshold, these two patches can be merged under the assumption that the patches were caused by a single thumb or palm.
摘要:
The suppression of errant motion regarding a mouse is disclosed. Mouse and touch information can be integrated to determine whether a gesture made on a surface of the mouse is errant, such as when a mouse is being moved and the fingers holding the mouse inadvertently move on the mouse surface. A gesture motion that is small relative to mouse motion can be considered errant and therefore at least partially suppressed, while a gesture motion that is large relative to mouse motion can be considered an intended gesture and therefore processed. Similarly, mouse and touch information can be integrated to determine whether a mouse motion is errant, such as when a robust gesture being made on the mouse surface inadvertently moves the mouse. A mouse motion that is small relative to gesture motion can be considered errant and therefore at least partially suppressed, while a mouse motion that is large relative to gesture motion can be considered an intended motion and therefore processed.
摘要:
Apparatus and methods are disclosed for simultaneously tracking multiple finger and palm contacts as hands approach, touch, and slide across a proximity-sensing, multi-touch surface. Identification and classification of intuitive hand configurations and motions enables unprecedented integration of typing, resting, pointing, scrolling, 3D manipulation, and handwriting into a versatile, ergonomic computer input device.
摘要:
Peripherals and data processing systems are disclosed which can be configured to interact based upon sensor data. In at least certain embodiments, a method for sensing motion and orientation information for a device includes receiving a motion event from at least one sensor located in a device. The method further includes determining an orientation for a display of the device. The method further includes determining whether the device is currently moving. The method further includes determining whether the device moves within an angle with respect to a ground reference for a first time period. The method further includes switching the orientation of the display of the device if the device moves in excess of the angle.
摘要:
Negative pixel compensation in a touch sensor panel is disclosed. The panel can compensate for a negative pixel effect in touch signal outputs due to poor grounding of an object touching the panel. To do so, the panel can reconstruct a captured touch image to remove negative pixel values indicative of the negative pixel effect and compute a composite image from the captured image and the reconstructed image to replace the captured image. In addition or alternatively, the panel can reconstruct a captured touch image to remove negative pixel values indicative of the negative pixel effect and replace the captured image with the reconstructed image.
摘要:
Apparatus and methods are disclosed for simultaneously tracking multiple finger and palm contacts as hands approach, touch, and slide across a proximity-sensing, multi-touch surface. Identification and classification of intuitive hand configurations and motions enables unprecedented integration of typing, resting, pointing, scrolling, 3D manipulation, and handwriting into a versatile, ergonomic computer input device.
摘要:
This invention is related to user input devices that accept complex user input including a combination of touch and push (or pick) input. The invention provides for selective ignoring or rejection of input received from such devices in order to avoid interpreting unintentional user actions as commands. Furthermore, some input signals can be modified. The selective rejection or modification can be performed by the user interface device itself or by a computing device that includes or is attached to the user interface device. The selective rejection or modification may be performed by a module that processes input signals, performs the necessary rejections and modifications and sends revised input signals to higher level modules.
摘要:
Apparatus and methods are disclosed for simultaneously tracking multiple finger and palm contacts as hands approach, touch, and slide across a proximity-sensing, multi-touch surface. Identification and classification of intuitive hand configurations and motions enables unprecedented integration of typing, resting, pointing, scrolling, 3D manipulation, and handwriting into a versatile, ergonomic computer input device.
摘要:
Apparatus and methods are disclosed for simultaneously tracking multiple finger and palm contacts as hands approach, touch, and slide across a proximity-sensing, multi-touch surface. Identification and classification of intuitive hand configurations and motions enables unprecedented integration of typing, resting, pointing, scrolling, 3D manipulation, and handwriting into a versatile, ergonomic computer input device.
摘要:
Techniques for identifying and discriminating between different types of contacts to a multi-touch touch-screen device are described. Illustrative contact types include fingertips, thumbs, palms and cheeks. By way of example, thumb contacts may be distinguished from fingertip contacts using a patch eccentricity parameter. In addition, by non-linearly deemphasizing pixels in a touch-surface image, a reliable means of distinguishing between large objects (e.g., palms) from smaller objects (e.g., fingertips, thumbs and a stylus) is described.