Systems and Methods for Coupling Light Into a Multi-Mode Resonator

    公开(公告)号:US20230341628A1

    公开(公告)日:2023-10-26

    申请号:US18333434

    申请日:2023-06-12

    CPC classification number: G02B6/2934 G02B6/12007

    Abstract: A photonic system includes a passive optical cavity and an optical waveguide. The passive optical cavity has a preferred radial mode for light propagation within the passive optical cavity. The preferred radial mode has a unique light propagation constant within the passive optical cavity. The optical waveguide is configured to extend past the passive optical cavity such that at least some light propagating through the optical waveguide will evanescently couple into the passive optical cavity. The passive optical cavity and the optical waveguide are collectively configured such that a light propagation constant of the optical waveguide substantially matches the unique light propagation constant of the preferred radial mode within the passive optical cavity.

    Systems and methods for coupling light into a multi-mode resonator

    公开(公告)号:US11675132B2

    公开(公告)日:2023-06-13

    申请号:US17562522

    申请日:2021-12-27

    CPC classification number: G02B6/2934 G02B6/12007

    Abstract: A photonic system includes a passive optical cavity and an optical waveguide. The passive optical cavity has a preferred radial mode for light propagation within the passive optical cavity. The preferred radial mode has a unique light propagation constant within the passive optical cavity. The optical waveguide is configured to extend past the passive optical cavity such that at least some light propagating through the optical waveguide will evanescently couple into the passive optical cavity. The passive optical cavity and the optical waveguide are collectively configured such that a light propagation constant of the optical waveguide substantially matches the unique light propagation constant of the preferred radial mode within the passive optical cavity.

    Electro-optical interface module and associated methods

    公开(公告)号:US11563506B2

    公开(公告)日:2023-01-24

    申请号:US17410443

    申请日:2021-08-24

    Abstract: A TORminator module is disposed with a switch linecard of a rack. The TORminator module receives downlink electrical data signals from a rack switch. The TORminator module translates the downlink electrical data signals into downlink optical data signals. The TORminator module transmits multiple subsets of the downlink optical data signals through optical fibers to respective SmartDistributor modules disposed in respective racks. Each SmartDistributor module receives multiple downlink optical data signals through a single optical fiber from the TORminator module. The SmartDistributor module demultiplexes the multiple downlink optical data signals and distributes them to respective servers. The SmartDistributor module receives multiple uplink optical data signals from multiple servers and multiplexes them onto a single optical fiber for transmission to the TORminator module. The TORminator module coverts the multiple uplink optical data signals to multiple uplink electrical data signals, and transmits the multiple uplink electrical data signals to the rack switch.

    Hybrid Multi-Wavelength Source and Associated Methods

    公开(公告)号:US20220390691A1

    公开(公告)日:2022-12-08

    申请号:US17892361

    申请日:2022-08-22

    Abstract: A substrate includes a first area in which a laser array chip is disposed. The substrate includes a second area in which a planar lightwave circuit is disposed. The second area is elevated relative to the first area. A trench is formed in the substrate between the first area and the second area. The substrate includes a third area in which an optical fiber alignment device is disposed. The third area is located next to and at a lower elevation than the second area within the substrate. The planar lightwave circuit has optical inputs facing toward and aligned with respective optical outputs of the laser array chip. The planar lightwave circuit has optical outputs facing toward the third area. The optical fiber alignment device is configured to receive optical fibers such that optical cores of the optical fibers respectively align with the optical outputs of the planar lightwave circuit.

    Pooled Memory System Enabled by Monolithic In-Package Optical I/O

    公开(公告)号:US20220148627A1

    公开(公告)日:2022-05-12

    申请号:US17583967

    申请日:2022-01-25

    Abstract: A computer memory system includes an electro-optical chip, an electrical fanout chip electrically connected to an electrical interface of the electro-optical chip, and at least one dual in-line memory module (DIMM) slot electrically connected to the electrical fanout chip. A photonic interface of the electro-optical chip is optically connected to an optical link. The electro-optical chip includes at least one optical macro that converts outgoing electrical data signals into outgoing optical data signals for transmission through the optical link. The optical macro also converts incoming optical data signals from the optical link into incoming electrical data signals and transmits the incoming electrical data signals to the electrical fanout chip. The electrical fanout chip directs bi-directional electrical data communication between the electro-optical chip and a dynamic random access memory (DRAM) DIMM corresponding to the at least one DIMM slot.

    Electro-Optic Combiner and Associated Methods

    公开(公告)号:US20210405296A1

    公开(公告)日:2021-12-30

    申请号:US17353789

    申请日:2021-06-21

    Abstract: An electro-optic combiner includes a polarization splitter and rotator (PSR) that directs a portion of incoming light having a first polarization through a first optical waveguide (OW). The PSR rotates a portion of the incoming light having a second polarization to the first polarization to provide polarization-rotated light. The PSR directs the polarization-rotated light through a second OW. Each of the first and second OW's has a respective combiner section. The first and second OW combiner sections extend parallel to each other and have opposite light propagation directions. A plurality of ring resonators is disposed between the combiner sections of the first and second OW's and within an evanescent optically coupling distance of both the first and second OW's. Each of ring resonators operates at a respective resonant wavelength to optically couple light from the combiner section of the first OW into the combiner section of the second OW.

Patent Agency Ranking