Abstract:
A flexible joint assembly for providing flexure to a rotor blade comprising an upper hub plate and a lower hub plate configured to secure a rotor blade yoke via a bolted joint located radially outward of a mast; and an upper flexure assembly connected to the upper hub plate and a lower flexure assembly connected to the lower hub plate, wherein the upper flexure assembly and lower flexure assembly are configured to promote flapping of the rotor blade yoke about a flapping hinge located radially outward of the bolted joint.
Abstract:
An apparatus comprising a hub configured to couple to a mast, a grip configured to couple to the hub and a rotor blade, a pitch actuator coupled to the grip and configured to change a pitch of the rotor blade relative to the mast, and a delta-3 restraint coupled to the pitch actuator, wherein the delta-3 restraint is fixed relative to the mast. An apparatus comprising a hub configured to couple to a mast, a grip configured to couple to the hub and a rotor blade, a pitch actuator coupled to the grip and configured to change a pitch of the rotor blade relative to the mast, and a delta-3 restraint coupled to the pitch actuator, wherein the delta-3 restraint is configured to control the pitch of the blade relative to the mast when the pitch actuator fails, and wherein the delta-3 restraint provides an instantaneous blade pitch-flap coupling response.
Abstract:
A shear bearing for a rotor system has a four bar linkage and a grip configured to retain a flexural yoke and the grip is connected between a first set of opposing links of the four bar linkage. A rotor system has a flexural yoke and a shear bearing configured to perform at least one of transmitting forces to the yoke and receiving forces from the yoke, wherein the yoke is free of cavities for receiving the shear bearing. A rotational system has a flexural yoke and a damper disposed on a surface of the yoke.
Abstract:
The present application includes a blade-pitch control system with an indexing swashplate. A swashplate assembly has a non-rotating portion and a rotating portion and an indexing portion of the mast. The swashplate assembly is translatably affixed to the indexing portion. A pitch link connects the rotating portion of the swashplate assembly to each blade. Translation of the swashplate assembly along the indexing portion causes a change in pitch of the blades and a corresponding indexing of the rotating portion of the swashplate assembly relative to the mast, the indexing causing a change in an angular orientation of each pitch link, thus providing for selected pitch-flap coupling between flapping motion of the yoke and pitch motion of the blades.
Abstract:
According to one embodiment, a flapping lock for a rotor system includes a downstop, a flapping stop, and an actuator. The downstop is in mechanical communication with a shaft. The flapping stop is in mechanical communication with a rotor hub. The actuator is operable to move the downstop towards the flapping stop.
Abstract:
According to one embodiment, a rotor head includes a yoke, a torque-splitter assembly, and a joint assembly. The torque-splitter assembly includes a spine assembly, a first trunion, and a second trunion. The spline assembly is configured to receive the drive shaft through a first opening. The spline assembly has a first plurality of outer splines oriented in a first direction and a second plurality of outer splines oriented in a second direction different from the first direction. The first trunion is disposed about the first plurality of outer splines. The second trunion is disposed about the second plurality of outer splines.
Abstract:
A system and method to change a spring rate of a damper in real time. The damper includes a housing having an inner surface that forms a cavity. An elastomeric material is disposed within the cavity and fixedly attached to the inner surface of the housing. A first chamber is formed by a first end of the elastomeric material and the inner surface of the housing. The method includes restricting movement of the elastomeric material by regulating the pressure within the first chamber, which in turn changes the spring rate of the damper.
Abstract:
According to one embodiment, a bearing is situated in a rotor system. The bearing features a housing having a first opening therethrough, a first member disposed within the first opening and having a second opening therethrough, and an elastomeric bearing disposed within the second opening and having a third opening therethrough configured to receive a shaft. The first member having at least one substantially curved surface. A sliding element bearing disposed between the housing and the first member.
Abstract:
The present application provides a drive link for a constant-velocity joint of an aircraft rotor, the link connecting a drive hub attached to a driveshaft to a rotor yoke. The link comprises a leading bearing connected to the drive hub, a trailing bearing connected to the yoke, a central portion between the bearings, and a tension loop connecting the bearings. The tension loop is formed from a composite material and is formed as a continuous band. The tension loop transfers drive forces from the leading bearing to the trailing bearing for driving the yoke in rotation with the driveshaft.
Abstract:
A damper system includes a damper and a heater operably associated with the damper. The method includes heating the damper with heat energy from the heater and then monitoring and regulating the heat energy to the damper with a sensor and control subsystem.