Abstract:
The present disclosure provides a liquid crystal lens and a display apparatus. The liquid crystal lens includes a first substrate and a second substrate arranged to be opposite to each other, a common electrode being provided on the second substrate; a liquid crystal layer interposed between the first and second substrates and including liquid crystal molecules; liquid crystal lens units, each of which includes a first group of strip-shaped electrodes and a second group of strip-shaped electrodes parallel to each other and spaced apart thereon, upon applying a voltage among the first and second groups, and the common electrode, a planoconvex lens is formed within the liquid crystal molecules between them, wherein each of the first and second groups includes layers of sub-electrodes insulated from each other, the sub-electrodes of the first and second groups are applied with a voltage, so as to adjust symmetry of the planoconvex lens.
Abstract:
Disclosed are a color filter substrate, a method for fabricating the same, and a display device. The color filter substrate includes a plurality of color-resist elements, and the color filter substrate further includes: a base substrate, and a groove arranged on the base substrate in correspondence to each of the color-resist elements, wherein a size of an opening of each groove is increase from the bottom to the top, a reflecting layer is coated on an inner surface of the groove, and a color-resist filler corresponding to a color of light emitted by the color-resist element is further filled in the groove above the reflecting layer.
Abstract:
The present disclosure relates to a liquid crystal lens assembly, a liquid crystal panel, and a liquid crystal display device. The liquid crystal lens assembly includes: a liquid crystal layer, a first electrode layer having a plurality of first bar electrodes, and a second electrode layer having a plurality of second bar electrodes. The first electrode layer and the second electrode layer are both provided on a first side of the liquid crystal layer, and an extending direction of the first bar electrodes intersects with an extending direction of the second bar electrodes. The present disclosure can increase a utilization efficiency of light beams, and reduce a power consumption of the light source side.
Abstract:
Provided is an anti-peeping device including: a first substrate; a second substrate opposite to the first substrate; a liquid crystal layer between the first substrate and the second substrate; a plurality of first polarizers on the first substrate and being spaced apart from each other; and a second polarizer on the second substrate. Linearly polarized light emitted from the second polarizer is incident onto the plurality of first polarizers through liquid crystal molecules in at least a portion of the liquid crystal layer. The anti-peeping device is switched between a first state and a second state in response to a deflection state of the liquid crystal molecules, wherein the linearly polarized light passes though the plurality of first polarizers in the first state, and the linearly polarized light is blocked by the plurality of first polarizers in the second state.
Abstract:
A liquid crystal lens and a display device are provided. The liquid crystal lens includes: a first substrate and a second substrate arranged opposite to each other; a liquid crystal layer, located between the first substrate and the second substrate; a plurality of strip-shaped first electrodes, parallel to each other and located on a side of the first substrate facing the liquid crystal layer; a first alignment layer, located on a side of the first electrodes facing the liquid crystal layer; a planar second electrode, located on a side of the second substrate facing the liquid crystal layer; and a second alignment layer, located on a side of the second electrode facing the liquid crystal layer, wherein an included angle between an extending direction of each of the first electrodes and one edge (a) of the first substrate is greater than zero, a rubbing direction of the first alignment layer and a rubbing direction of the second alignment layer are symmetric with respect to the extending direction of the first electrode, thereby ensuring that a liquid crystal lens with better symmetry can be acquired under smaller moiré pattern.
Abstract:
The present invention discloses a slit electrode for solving the problem that the process margin of the existing slit electrode is relatively low. The slit electrode provided by the present invention comprises: at least one slit electrode unit, the slit electrode unit comprising a plurality of strip electrodes, a slit being provided between two adjacent strip electrodes; wherein each strip electrode has a given average width, the average widths of at least two strip electrodes in the slit electrode unit are not equal. The present invention further discloses an array substrate comprising the slit electrode and a display device.
Abstract:
The present invention relates to the field of display technology, and particularly to a stereoscopic display device and a cell-aligning packaging method of the same. The stereoscopic display device is divided into a display area and a non-display area surrounding the display area on the periphery of the display area, and comprises a conversion panel and a liquid crystal panel which are aligned to form a cell, a first polarizer is provided between the conversion panel and the liquid crystal panel, the first polarizer is arranged in the display area, and an adhesive lump is provided around the first polarizer and correspondingly to the non-display area between the conversion panel and the liquid crystal panel and is used for bonding the conversion panel and the liquid crystal panel into a whole.
Abstract:
The present disclosure provides an array substrate and a method for producing the same and a liquid crystal display apparatus. The array substrate provided by an embodiment of the present invention comprises: a base substrate; a plurality of sub-pixel regions which are delimited by gate lines and data lines respectively and which are located on the base substrate, each of which is provided with a thin film transistor TFT and a common electrode above the thin film transistor; and an alignment film located above the common electrode, wherein the alignment film has an alignment direction at a predetermined angle to the direction in which the gate lines extend, and a void region is arranged at a location of the common electrode corresponding to the thin film transistor, the direction in which the void region extends being identical to the alignment direction of the alignment film.
Abstract:
The embodiment of the invention provides a method and an apparatus for calibrating a liquid crystal display device. The liquid crystal display device comprises a pixel array, each pixel of the pixel array comprises electrodes in inclined arrangement, wherein an inclined orientation of the electrodes in pixels of odd rows is different with an inclined orientation of the electrodes in pixels of even rows; the method comprises: measuring brightness of the pixels of odd rows in a plurality of gray scales and brightness of the pixels of even rows in the plurality of gray scales respectively in a predetermined direction; and adjusting data line voltages of the pixels of odd rows and/or data line voltages of the pixels of even rows, such that in the predetermined direction, in each one of the plurality of gray scales, brightness of the pixels of odd rows is equal to brightness of the pixels of even rows.
Abstract:
A pixel structure comprises a plurality of pixel regions, and each of the pixel regions includes first and second electrodes that are overlapped with each other, the first electrode is disposed above the second electrode, and each of the pixel regions is divided at least into a first to fourth domain display regions; strip-shaped first electrodes in the first to fourth domain display regions make first to fourth angles with a reference direction; the sum of the first angle and the second angle is 180 degrees, the sum of the third angle and the fourth angle is 180 degrees, and the first, the second, the third and the fourth angles are different from one another.